Naturwissenschaften

, Volume 94, Issue 8, pp 623–630 | Cite as

Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods

  • Hanns-Christian Gunga
  • Tim Suthau
  • Anke Bellmann
  • Andreas Friedrich
  • Thomas Schwanebeck
  • Stefan Stoinski
  • Tobias Trippel
  • Karl Kirsch
  • Olaf Hellwich
Original Paper

Abstract

Both body mass and surface area are factors determining the essence of any living organism. This should also hold true for an extinct organism such as a dinosaur. The present report discusses the use of a new 3D laser scanner method to establish body masses and surface areas of an Asian elephant (Zoological Museum of Copenhagen, Denmark) and of Plateosaurus engelhardti, a prosauropod from the Upper Triassic, exhibited at the Paleontological Museum in Tübingen (Germany). This method was used to study the effect that slight changes in body shape had on body mass for P. engelhardti. It was established that body volumes varied between 0.79 m3 (slim version) and 1.14 m3 (robust version), resulting in a presumable body mass of 630 and 912 kg, respectively. The total body surface areas ranged between 8.8 and 10.2 m2, of which, in both reconstructions of P. engelhardti, ∼33% account for the thorax area alone. The main difference between the two models is in the tail and hind limb reconstruction. The tail of the slim version has a surface area of 1.98 m2, whereas that of the robust version has a surface area of 2.73 m2. The body volumes calculated for the slim version were as follows: head 0.006 m3, neck 0.016 m3, fore limbs 0.020 m3, hind limbs 0.08 m3, thoracic cavity 0.533 m3, and tail 0.136 m3. For the robust model, the following volumes were established: 0.01 m3 head, neck 0.026 m3, fore limbs 0.025 m3, hind limbs 0.18 m3, thoracic cavity 0.616 m3, and finally, tail 0.28 m3. Based on these body volumes, scaling equations were used to assess the size that the organs of this extinct dinosaur have.

Keywords

Dinosauria Sauropoda Paleophysiology Body mass estimation Specific tissue density Paleoecology 

References

  1. Alexander RM (1989) Dynamics of dinosaurs and other extinct giants. Columbia University Press, New YorkGoogle Scholar
  2. Anderson JF, Rahn H, Prange HD (1979) Scaling of supportive tissue mass. Q Rev Biol 54:139–148CrossRefGoogle Scholar
  3. Anderson JF, Hall-Martin A, Russell DA (1985) Long-bone circumference and weight in mammals, birds, and dinosaurs. J Zool (London) 207:53–61Google Scholar
  4. Bellmann A, Suthau T, Stoinski S, Friedrich A, Hellwich O, Gunga H-C (2005) 3D-modelling of dinosaurs. In: Grün/Kahmen (ed) Optical 3-D measurement techniques VII (Proceedings of the 7th Conference) Part 1, ViennaGoogle Scholar
  5. Blob RW (1998) Evaluation of vent position from lizard skeletons for estimation snout-vent length and body mass. Copeia 3:792–801CrossRefGoogle Scholar
  6. Calder EH (1984) Size, function, and life history. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  7. Calder EH (1996) Size, function, and life history. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  8. Christiansen P, Fariña RA (2004) Mass prediction in theropod dinosaurs. Historical Biology: Journal of Paleobiology 16:85–92CrossRefGoogle Scholar
  9. Clauss M, Robert N, Walzer, Vitaud C, Hummel J (2005) Testing predictions on body mass and gut contents: dissection of an African elephant Loxodonta africana Blumenbach 1797. Eur J Wildl Res 51:291–294CrossRefGoogle Scholar
  10. Colbert EH (1962) The weights of dinosaurs. Am Mus Novit 2076:1–16Google Scholar
  11. Galton PM, Upchurch P (2004) Prosauropoda. In: Weishampel DB, Dodson P, Osmolska H (eds) The Dinosauria (2nd edn). University of California Press, Berkeley, pp 232–258Google Scholar
  12. Gunga H-C, Kirsch K, Baartz F, Röcker L, Heinrich W-D, Lisowski W, Wiedemann A, Albertz J (1995) New data on the dimensions of Brachiosaurus brancai and their physiological implications. Naturwissenschaften 82:190–192Google Scholar
  13. Gunga H-C, Kirsch K, Rittweger J, Clarke A, Albertz J, Wiedemann A, Mokry S, Suthau T, Wehr A, Clarke D, Heinrich W-D, Schultze H-P (1999) Body size and body volume distribution in two sauropods from the Upper Jurassic of Tendaguru/Tansania (East Africa). Mitteilungen aus dem Museum für Naturkunde in Berlin. Geowissenschaftliche Reihe 2:91–102Google Scholar
  14. Haubold H (1990) Die Dinosaurier. A. Ziemsen Verlag, WittenbergGoogle Scholar
  15. Henderson DM (1999) Estimating the masses and centers of masses of extinct animals by 3-D mathematical slicing. Paleobiology 25:88–106Google Scholar
  16. Jung C (2002) Kernspintomographische Untersuchung der Relation zwischen Muskelvolumen, Muskelgeometrie und Knochengeometrie am Unterschenkel. FU Dissertation, BerlinGoogle Scholar
  17. Klein (2004) Bone histology and growth of the prosauropod dinosaur Plateosaurus engelhardti MEYER, 1837 from the Norian bonebeds of Trossingen (Germany) and Frick (Switzerland). Dissertation, BonnGoogle Scholar
  18. Lambert D (1980) A field guide to dinosaurs. Avon, New YorkGoogle Scholar
  19. Mallison H (2007) Virtual Dinosaurs - Developing Computer Aided Design and Computer Aided Engineering Modeling Methods for Vertebrate Paleontology. Doctoral Thesis, Eberhardt-Karls-Universität TübingenGoogle Scholar
  20. Moen DS (2006) Cope’s rule in cryptodiran turtles: do the body sizes of extant species reflect a trend of phyletic size increase? J Evol Biol 19:1210–1221PubMedCrossRefGoogle Scholar
  21. Motani R (2001) Estimating body mass from silhouettes: testing the assumption of elliptical body cross-sections. Paleobiology 27:735–750CrossRefGoogle Scholar
  22. Owen-Smith RN (1988) Megaherbivores. The influence of very large body size on ecology. Cambridge University Press, CambridgeGoogle Scholar
  23. Peczkis J (1994) Implications of body-mass estimates for dinosaurs. J Vertebr Paleontol 14:520–533CrossRefGoogle Scholar
  24. Perry SF (1989) Mainstreams in the evolution of vertebrate respiratory structures. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Chapter 1. Academic, London, pp l–67Google Scholar
  25. Perry SF (1992) Gas exchange strategies in reptiles and the origin of the avian lung. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates. Respiration, circulation, and metabolism. Marcel Dekker, New York, pp 149–167Google Scholar
  26. Sander PM (1999) Life history of the Tendaguru sauropods as deduced from long bone histology. Mitteilungen aus dem Museum für Naturkunde Berlin, Geowissenschaftliche Reihe 2:103–112Google Scholar
  27. Sander PM (2000) Long bone histology of the Tendaguru sauropods: implication for growth and biology. Paleobiology 26:466–488CrossRefGoogle Scholar
  28. Sander PM, Klein N (2005) Developmental plasticity in the life history of a prosauropod dinosaur. Science 310:1800–1802PubMedCrossRefGoogle Scholar
  29. Schmidt-Nielsen K (1997) Animal physiology. Cambridge University Press, CambridgeGoogle Scholar
  30. Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, CambridgeGoogle Scholar
  31. Seebacher F (2001) A new method to calculate allometric length-mass relationships of dinosaurs. J Vertebr Paleontol 21:51–60CrossRefGoogle Scholar
  32. Wedel MJ (2003) Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs. Paleobiology 29:243–255CrossRefGoogle Scholar
  33. Wedel MJ (2005) Postcranial skeletal pneumaticity in sauropods and its implications for mass estimates. In: Wilson JA, Curry-Rogers K (eds) The sauropods: evolution and paleobiology. University of California Press, pp 201–228Google Scholar
  34. Weibel ER, Taylor CR (eds) (1981) Design of the mammalian respiratory system. Respir Physiol 44:1–164Google Scholar
  35. Wiedemann A, Wehr A (1998) Vermessung von Dinosaurierskeletten mit Stereophotogrammetrie und Laserscanner. Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung 6:301–308Google Scholar
  36. Wiedemann A, Suthau T, Albertz J (1999) Photogrammetric survey of dinosaur skeletons. Mitteilungen aus dem Museum für Naturkunde Berlin, Geowissenschaftliche Reihe Band 2:113–119Google Scholar
  37. Withers PC (1992) Comparative animal physiology. Saunders College Publishing, Fort WorthGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hanns-Christian Gunga
    • 1
    • 3
  • Tim Suthau
    • 2
  • Anke Bellmann
    • 2
  • Andreas Friedrich
    • 2
  • Thomas Schwanebeck
    • 2
  • Stefan Stoinski
    • 2
  • Tobias Trippel
    • 1
  • Karl Kirsch
    • 1
  • Olaf Hellwich
    • 2
  1. 1.Department of Physiology, Center of Space Medicine BerlinCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.Computer Vision & Remote Sensing, Berlin University of TechnologyBerlinGermany
  3. 3.Berlin-DahlemGermany

Personalised recommendations