Naturwissenschaften

, Volume 94, Issue 6, pp 417–429 | Cite as

Wolfgang Priester: from the big bounce to the \(\Lambda\)-dominated universe

Review Article

Abstract

Wolfgang Priester (1924–2005) was one of Germany’s most versatile and quixotic astrophysicists, reinventing himself successively as a radio astronomer, space physicist and cosmologist, and making a lasting impact on each field. We focus in this personal account on his contributions to cosmology, where he will be most remembered for his association with quasars, his promotion of the idea of a nonsingular “big bounce” at the beginning of the current expansionary phase, and his recognition of the importance of dark energy (Einstein’s cosmological constant Λ) well before this became the standard paradigm in cosmology.

Keywords

Cosmology: big bang Dark energy Cosmological parameters Quasars: absorption lines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blome H-J, Priester W (1984a) Urknall und Evolution des Kosmos I. Einstein-Friedmann-Kosmos und das Neutrino-Problem. Naturwissenschaften 71:456–467Google Scholar
  2. Blome H-J, Priester W (1984b) Urknall und Evolution des Kosmos II. Inflationär modifizierter Urknall und Eschatologie der Kosmos. Naturwissenschaften 71:515–527Google Scholar
  3. Blome H-J, Priester W (1984c) Vacuum energy in a Friedmann-Lemaître cosmos. Naturwissenschaften 71:528–531Google Scholar
  4. Blome H-J, Priester W (1985) Vacuum energy in cosmic dynamics. Astrophys Space Sci 117:327–335Google Scholar
  5. Blome H-J, Priester W (1991) Big Bounce in the very early universe. Astron Astrophys 250:43–49Google Scholar
  6. Blome H-J, Priester W, Hoell J (1995a) New ways in cosmology: I. Friedmann-Lemaître model derived from the Lyman alpha forest in quasar spectra. In: Shapiro MM, Silberberg R, Wefel JP (eds) Currents in high-energy astrophysics. Kluwer, Dordrecht, pp 291–300Google Scholar
  7. Blome H-J, Priester W, Hoell J (1995b) New ways in cosmology: II. Alternative models for the very early universe. In: Shapiro MM, Silberberg R, Wefel JP (eds) Currents in high-energy astrophysics. Kluwer, Dordrecht, pp 301–312Google Scholar
  8. Blome H-J, Hoell J, Priester W (1997) Kosmologie. In: Bergmann-Schaefer Lehrbuch der Experimentalphysik 8, 1st edn. Walter de Gruyter, Berlin, pp 311–427Google Scholar
  9. Blome H-J, Hoell J, Priester W (2002) Kosmologie. In: Bergmann-Schaefer Lehrbuch der Experimentalphysik 8, 2nd edn. Walter de Gruyter, Berlin, pp 439–582Google Scholar
  10. Blum P, Priester w, Schuchardt K, Wulf-Mathies C (1976) On the decay of satellite orbits. In: Space research XVI, Proceedings open meetings of working groups on physical sciences and symposium and workshop on results from coordinated upper atmosphere measurement programs. Akademie-Verlag, Berlin, pp 197–201Google Scholar
  11. Bojowald M (2005) The early universe in loop quantum gravity. J Phys Conf Ser 24:77–86Google Scholar
  12. Calder N (2003) Magic universe: the Oxford guide to modern science. Oxford University Press, Oxford, pp 73, 694Google Scholar
  13. Caldwell RR, Dave R, Steinhardt PJ (1998) Cosmological imprint of an energy component with general equation of state. Phys Rev Lett 80:1582–1585Google Scholar
  14. Carroll SM (2001) The cosmological constant. Living Rev Relativity 4:1–50Google Scholar
  15. Carroll SM, Press WH, Turner EL (1992) The cosmological constant. Annu Rev Astron Astrophys 30:499–542Google Scholar
  16. Chiu H-Y (1964) Gravitational collapse. Phys Today 17:21–34CrossRefGoogle Scholar
  17. Chu Y, Hoell J, Blome H-J, Priester W (1988a) On the observational discrimination of Friedmann-Lemaître models. In: Andouze J, Pelletan M-C, Szalay S (eds) Large scale structures of the universe. Proceedings of the IAU Symposium no. 130. Kluwer, Dordrecht, p 517Google Scholar
  18. Chu Y, Hoell J, Blome H-J, Priester W (1988b) The observational discrimination of Friedmann-Lemaître models. Astrophys Space Sci 148:119–130Google Scholar
  19. Dröge F, Priester W (1956) Durchmusterung der allgemeinen Radiofrequenz-Strahlung bei 200 MHz. Zeits. Astrophysics 40:236–248Google Scholar
  20. Eddington AS (1924) The mathematical theory of relativity. Cambridge University Press, Cambridge, UK, p 154Google Scholar
  21. Efstathiou G, Sutherland WJ, Maddox SJ (1990) The cosmological constant and cold dark matter. Nature 348:705–707Google Scholar
  22. Feldman HA, Evrard AE (1993) Structure in a loitering universe. Int J Mod Phys D 2:113–122Google Scholar
  23. Gasperini M, Veneziano G (2003) The pre-big-bang scenario in string cosmology. Phys Rep 373:1–212Google Scholar
  24. Glanz J (1998) Breakthrough of the year: astronomy—cosmic motion revealed. Science 282:2156–2157Google Scholar
  25. Gold T (1965) Summary of after-dinner speech. In: Quasi-stellar sources and gravitational collapse. University of Chicago Press, Chicago, p 470Google Scholar
  26. Grahl B-H, Priester W (1959) Eine Messung der Position der Radioquelle Sagittarius A. Zeits. Astrophysics 47:50–53Google Scholar
  27. Gratton S, Steinhardt P (2003) Cosmology—beyond the inflationary border. Nature 423:817–818PubMedGoogle Scholar
  28. Grewing M, Priester W (1973) Nichtthermische Strahlungsquellen im Radiofrequenzbereich (Radiogalaxien, Quasare, Pulsare). Phys Didakt 3:212–225Google Scholar
  29. Grewing M, Pfleiderer J, Priester W (1968) Nichtthermische kosmische Strahlungsquellen. Forschungsbericht des Landes Nordrhein-Westfalen 176. Westdeutscher Verlag, Köln-Opladen, 48 ppGoogle Scholar
  30. Harris I, Priester W (1962a) Time-dependent structure of the upper atmosphere. J Atmos Sci 19:286–301Google Scholar
  31. Harris I, Priester W (1962b) Theoretical models for the solar-cycle variation of the upper atmosphere. J Geophys Res 67:4585–4591Google Scholar
  32. Harris I, Priester W (1962c) Time-dependent structure of the upper atmosphere. NASA Technical Note D-1443, 71 ppGoogle Scholar
  33. Harris I, Priester W (1962d) Theoretical models for the solar-cycle variation of the upper atmosphere. NASA Technical Note D-1444, 261 ppGoogle Scholar
  34. Harris I, Priester W (1963a) Heating of the upper atmosphere. In: Priester, W (ed) Space research III. Proceedings of the third international space science symposium. North Holland, Amsterdam, pp 53–75Google Scholar
  35. Harris I, Priester W (1963b) Relation between theoretical and observational models of the upper atmosphere. J Geophys Res 68:5891–5894Google Scholar
  36. Harris I, Priester W (1965a) On the diurnal variation of the upper atmosphere. In: King-Hele DG, Muller P, Righini G (eds) Space research V. Proceedings of the fifth international space science symposium. North Holland, Amsterdam, p 1214Google Scholar
  37. Harris I, Priester W (1965b) Of the diurnal variation of the upper atmosphere. J Atmos Sci 22:3–10Google Scholar
  38. Harris I, Priester W (1968) The structure of the thermosphere and its variations. In: Quiroz RS (ed) Meteorological investigations of the upper atmosphere. Meteorological Monographs, vol. 9, Proceedings of the American Meteorological Society symposium on meteorological investigations above 70 km. Published in Boston, MA by the American Meteorological Society in 1968, pp 72–81 see http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1968miua.conf...72H
  39. Harris I, Priester W (1969) On the semiannual variation of the upper atmosphere. J Atmos Sci 26:233–240Google Scholar
  40. Haslam G, Wielebinski R, Priester W (1982) Radio maps of the sky. Sky Telesc 63:230–232Google Scholar
  41. Hoell J, Priester W (1988) Die Evolutionszeit der Quasare, Sterne und Weltraum. Sterne Weltraum 27:412–413Google Scholar
  42. Hoell J, Priester W (1990a) Voids, Walls und Schweizer Käse. Sterne Weltraum 29:74–75Google Scholar
  43. Hoell J, Priester W (1990b) Ist die fehlende Masse Illusion? Sterne Weltraum 29:638–641Google Scholar
  44. Hoell J, Priester W (1991a) Dark matter and the cosmological constant. Comments Astrophys 15:127–136Google Scholar
  45. Hoell J, Priester W (1991b) Void-structure in the early universe. Implications for a Λ > 0 cosmology. Astron Astrophys 251:L23–L26Google Scholar
  46. Hoell J, Priester W (1994a) The Lyman α forest and the universal bubble structure. In: Wamsteker W, Longair MS, Kondo Y (eds) Frontiers of space and ground-based astronomy: the astrophysics of the 21st century. Kluwer, Dordrecht, pp 651–652Google Scholar
  47. Hoell J, Priester W (1994b) Galaxy formation in a Friedmann-Lemaître model. In: Hensler G, Theis C, Gallagher J (eds) Panchromatic view of galaxies—their evolutionary puzzle. Éditions Frontières, Gif-sur-Yvette, pp 29–33Google Scholar
  48. Hoell J, Priester W (1995) The Lyman α forest and the universal bubble structure. In: Behara M, Fritsch R, Lintz RG (eds) Symposia Gaussiana. Walter de Gruyter, Berlin, pp 617–625Google Scholar
  49. Hoell J, Liebscher L-E, Priester W (1994) Confirmation of the Friedmann-Lemaître universe by the distribution of the larger absorbing clouds. Astron Nachr 315:89–96Google Scholar
  50. Israelit M, Rosen N (1989) A singularity-free cosmological model in general relativity. Astrophys J 342:627–634Google Scholar
  51. Kardashev N (1967) Lemaître’s universe and observations. Astrophys J 150:L135–L139Google Scholar
  52. Kardashev N, Blome H-J, Priester WP (1989) Insular baryonic asymmetry in the universe. Comments Astrophys 13:87–101Google Scholar
  53. Kim TS et al (2002) The physical properties of the Lyα forest at \(z>1.5\) Mon Not R Astron Soc 335:555–573Google Scholar
  54. Kragh H (1996) Cosmology and Controversy. Princeton University Press, Princeton, NJGoogle Scholar
  55. Krauss LM, Turner MS (1995) The cosmological constant is back. Gen Relativ Gravit 27:1137–1144Google Scholar
  56. Kundt W (1989) Brennpunkte astrophysikalischer Forschung. Naturwissenschaften 76:289–324Google Scholar
  57. Kundt W (2005) Nachruf auf Wolfgang Priester. Telescopium 130:51–55 (see http://www.volkssternwarte-bonn.de/info/Priester.html)Google Scholar
  58. Lewis RB, Srinivasan B, Anders E (1975) Host phase of a strange xenon component in Allende. Science 190:1251–1262Google Scholar
  59. Liebscher DE, Priester W (1995) Quasar absorption lines and the parameters of the Friedmann universe. In: Mücket J, Gottloeber S, Müller V (eds) Large scale structure in the universe. World Scientific, Singapore, p 273Google Scholar
  60. Liebscher D-E, Priester W, Hoell J (1992a) Lyman-alpha forests and the evolution of the universe. Astron Gesellschaft Abstract Ser 7:60Google Scholar
  61. Liebscher D-E, Priester W, Hoell J (1992b) A new method to test the model of the universe. Astron Astrophys 261:377–381Google Scholar
  62. Liebscher D-E, Priester W, Hoell J (1992c) Lyman-alpha forests and the evolution of the universe. Astron Nachr 313:265–273Google Scholar
  63. Martin HA, Priester W (1960) Measurement of solar and diurnal effects in the high atmosphere by artificial satellites. Nature 185:600–601Google Scholar
  64. Martin HA, Neveling W, Priester W, Roemer M (1961) Model of the upper atmosphere from 130 through 1600 km derived from satellite orbits. Mitteilungen der Sternwarte Bonn 35:16 pp; In: van de Hulst H, de Jager C, Moore AF (eds) Space research II. Proceedings of the second international space science symposium. North Holland, Amsterdam, pp 902–917Google Scholar
  65. Müller HG, Priester W, Fischer G (1957) Radioemission des Kometen 1956 h. Die Naturwissenschaften 44:392–393Google Scholar
  66. Newell HE, Kroshkin MG, Priester W (1969) Satelliten erkunden Erde und Mond. Umschau-Verlag, Frankfurt a.M., 136 ppGoogle Scholar
  67. Newton G, Horowitz R, Priester W (1964) Atmospheric densities from Explorer 17 density gages and a comparison with satellite drag data. J Geophys Res 69:4690–4692Google Scholar
  68. Newton GP, Horowitz R, Priester W (1965) Atmospheric density and temperature variations from the Explorer XVII satellite and a further comparison with satellite drag. Planet Space Sci 13:599–616Google Scholar
  69. Ostriker JP, Steinhardt PJ (1995) Cosmic concordance. Nature 377:600–602Google Scholar
  70. Overduin J, Priester W (2001) Problems of modern cosmology: how dominant is the vacuum?. Naturwissenschaften 88:229–248PubMedGoogle Scholar
  71. Overduin J, Priester W (2004) An accelerating closed universe. In: Shapiro MM, Stanev T, Wefel JP (eds) Relativistic astrophysics and cosmology. Proceedings of the international school of cosmic aay astrophysics—13th course. World Scientific, Singapore, pp 3–21Google Scholar
  72. Overduin JM, Priester W (2006) Quasar absorption-line number density in a closed, Λ-dominated universe. Astrophys Space Sci 305:159–163Google Scholar
  73. Padmanabhan T (1993) Structure formation in the universe. Cambridge University Press, Cambridge, UK, p 342Google Scholar
  74. Papanastassiou DA, Wasserburg GF (1971) Lunar chronology and evolution from Rb–Sr Studies of Apollo 11 and 12 Samples. Earth Planet Sci Lett 11:37–62Google Scholar
  75. Peacock JA (1999) Cosmological physics. Cambridge University Press, Cambridge, UK, p 363Google Scholar
  76. Peebles PJE (1993) Principles of physical Cosmology. Princeton University Press, Princeton, NJ, pp 318–319, 364–367Google Scholar
  77. Peebles PJE, Ratra B (1988) Cosmology with a time-variable cosmological “constant”. Astrophys J 325:L17–L20Google Scholar
  78. Petrosian V (1982) Phase transitions and dynamics of the universe. Nature 298:805–808Google Scholar
  79. Petrosian V, Salpeter E, Szekeres P (1967) Quasi-stellar objects in universes with non-zero cosmological constant. Astrophys J 147:1222–1226Google Scholar
  80. Pfleiderer J, Priester W (1966) Neuere Ergebnisse der Erforschung der Quasare, Sterne und Weltraum. Sterne Weltraum 5:200–205Google Scholar
  81. Pfleiderer J, Priester W, Köhnlein W (1973) Processes of continuous radio emission. In: Bruzek A, Pilkuhn H (eds) Lectures on space physics 2—sun and interplanetary medium, relativistic astrophysics. Bertelsmann Universitätsverlag, Düsseldorf, pp 127–193Google Scholar
  82. Priester W (1953) Photometrie von Fraunhofer-Linien mit der Lummer-Platte, angewandt auf die Mitte-Rand-Variation der Natrium D-Linien. Zeits Astrophys 32:200–250Google Scholar
  83. Priester W (1954a) Zur Deutung der extragalaktischen Radiofrequenz-Strahlung. Zeits Astrophys 34:283–294Google Scholar
  84. Priester W (1954b) Über die Anzahl der Radio-Sterne in der Milchstraße. Zeits Astrophys 34:295–301Google Scholar
  85. Priester W (1955a) Gestörte Multipletts in Sternatmosphären. Zeits Astrophys 36:230–239Google Scholar
  86. Priester W (1955b) Über die Radioquelle Sagittarius A. Zeits Astrophys 38:73–80Google Scholar
  87. Priester W (1957) Photometrie von Fraunhofer-Linien mit der Lummer-Platte, angewandt auf die Mitte-Rand-Variation der Natrium D-Linien. Veröffentlichungen der Universitäts-Sternwarte zu Göttingen 6:85–136Google Scholar
  88. Priester W (1958a) Photometrie von Fraunhofer-Linien mit der Lummer-Platte, angewandt auf die Mitte-Rand-Variation der Natrium D-Linien. Veröffentlichungen der Universitäts-Sternwarte zu Göttingen 6:136.1–136.2Google Scholar
  89. Priester W (1958b) Zur Statistik der Radioquellen in der relativistischen Kosmologie. Zeits Astrophys 46:179–202Google Scholar
  90. Priester W (1959) Sonnenaktivität und Abbremsung der Erdsatelliten. Mitteilungen der Sternwarte Bonn 24:4 pp; Die Naturwissenschaften 46:197–198Google Scholar
  91. Priester W (1961a) Die galaktische Radiostrahlung. Mitteilungen der Astronomischen Gesellschaft 14:21 ppGoogle Scholar
  92. Priester W (1961b) Solar activity effect and diurnal variation in the upper atmosphere. J Geophys Res 66:4143–4148CrossRefGoogle Scholar
  93. Priester W, ed (1963a) Space research III. Proceedings of the third international space science symposium. North Holland, Amsterdam, 1275 ppGoogle Scholar
  94. Priester W (1963b) Discussion of atmospheric heat sources based on the analysis of satellite drag data. In: Roy M (ed) Dynamics of satellites. Springer, Berlin Heidelberg New York pp 143–157Google Scholar
  95. Priester W (1965) On the variations of the thermospheric structure. Proc R Soc Lond A 288:493–509CrossRefGoogle Scholar
  96. Priester W (1967) Density and temperature variations above 150 km. Bull Am Meteorol Soc 48:215Google Scholar
  97. Priester W (1970) Neue Art energiereicher Objekte im Weltraum. Erdol und Kohle Erdgas Petrochemie Vereinigt mit Brennstoff-Chemie 23:702Google Scholar
  98. Priester W (1977) Energiereiche Objekte im Kosmos. Stahl und Eisen 97:1263–1270Google Scholar
  99. Priester W (1978) Astronomie und Öffentlichkeit. Mitt Astron Ges 43:11–19Google Scholar
  100. Priester W (1979) Fortschritt aus dem Unerwarteten. Sterne und Weltraum 17:316–318; Mitt Astron Ges 45:9–15Google Scholar
  101. Priester W (1980) Quasare, Blasare, Schwerkraftstrudel. Phys Bl 36:241–245Google Scholar
  102. Priester W (1981) Die strahlungsstärksten Objekte am Rande des Universums: die Quasare. Universitas 1981. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 293–304Google Scholar
  103. Priester W (1982) Neue Fortschritte in der Kosmologie. Universitas 1982. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 827–832Google Scholar
  104. Priester W (1983a) Vom Urknall bis zu schwarzen Löchern. Tech Mitt 1:2–8 (Essen: Vulkan Verlag)Google Scholar
  105. Priester W (1983b) Wo blieb die Antimaterie? Nat Wiss Rundsch 36:11–15Google Scholar
  106. Priester W (1984) Urknall und Evolution des Kosmos—Fortschritte in der Kosmologie. Nordrhein-Westfälische Akademie der Wissenschaften 333. Westdeutscher Verlag, Opladen, 85 ppGoogle Scholar
  107. Priester W (1985a) Neutrinos and the fate of our Universe. Universitas 1985. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 143–149Google Scholar
  108. Priester W (1985b) Josef Samuelowitsch Shklovsky. Sterne Weltraum 24:427Google Scholar
  109. Priester W (1986) Vom Ursprung des Universums. In: Maier-Leibnitz H (ed) Zeugen des Wissens. Hase & Köhler, Mainz, pp 127–156Google Scholar
  110. Priester W (1987) Relationship between redshift and recession velocities in an isotropic universe. Naturwissenschaften 74:601–602Google Scholar
  111. Priester W (1988a) Yakov Borisovich Zel’dovich. Sterne Weltraum 27:79Google Scholar
  112. Priester W (1988b) The universe of Yakov Zel’dovich. Sky Telesc 76:354Google Scholar
  113. Priester W (1994) Neue Erkenntnisse über Ursprung und Entwicklung des Kosmos. Technische Mitteilungen (Organ des Hauses der Technik eV Essen) 87:3–12Google Scholar
  114. Priester W (1995) Über den Ursprung des Universums: das Problem der Singularität. Nordrhein-Westfälische Akademie der Wissenschaften 414. Westdeutscher Verlag, Opladen, 36 ppGoogle Scholar
  115. Priester W, Blome H-J (1987a) Zum Problem des Urknalls—‘Big Bang’ oder ‘Big Bounce’?I. I Sterne Weltraum 26:83–89Google Scholar
  116. Priester W, Blome H-J (1987b) Zum Problem des Urknalls—‘Big Bang’ oder ‘Big Bounce’? II. Sterne Weltraum 26:140–144Google Scholar
  117. Priester W, Cattani D (1962) On the semiannual variation of geomagnetic activity and its relation to the solar corpuscular radiation. J Atmos Sci 19:121–126Google Scholar
  118. Priester W, Dröge F (1955) Über die Mitte-Rand-Variation der solaren Radiofrequenzstrahlung von 198 MHz während der Finsternis 1954 Juni 30. Zeits Astrophys 37:132–142Google Scholar
  119. Priester W, Hergenhahn G (1958) Bahnbestimmung von Erdsatelliten aus Dopplereffecktmessungen. Wissenschaftliche Abhandlungen der Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen 8:38 ppGoogle Scholar
  120. Priester W, Martin HA (1960a) Solare und tageszeitliche Effekte in der Hochatmospäre aus Beobachtungen künstlicher Erdsatelliten. Mitteilungen der Sternwarte Bonn 29:53 pp; Forschungsbericht des Landes Nordrhein-Westfalen 547:53 pp (Köln-Opladen: Westdeutscher Verlag, 1960); Royal Aircraft Establishment Farnborough Library Translation 901:20 ppGoogle Scholar
  121. Priester W, Martin HA (1960b) Temperature inversion in the F1-layer. Nature 188:200–202Google Scholar
  122. Priester W, Rosenberg J (1965) Extragalactic radio sources. NASA Technical Note D-2888; In: Hess WN (ed) Introduction to Space Science, 1st edn. Gordon and Breach, New York, 823–862Google Scholar
  123. Priester W, Rosenberg J (1968) Extragalactic radio sources. In: Hess WN, Wilmot GD (eds) Introduction to space science, 2nd edn. Gordon and Breach, New York, pp 937–981Google Scholar
  124. Priester W, Schaaf R (1987) Carl Wirtz und die Flucht der Spiralnebel. Sterne Weltraum 26:376–377Google Scholar
  125. Priester W, van de Bruck C (1998) 75 Jahre Theorie des expandierenden Kosmos: Friedmann Modelle und der ‘Einstein-Limit’. Naturwissenschaften 85:524–538Google Scholar
  126. Priester W, Bennewitz H-G, Lengrüsser P (1958) Radiobeobachtungen des ersten künstlichen Erdsatelliten. Wissenschaftliche Abhandlungen der Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen 1:46 ppGoogle Scholar
  127. Priester W, Martin HA, Kramp K (1960) Diurnal and seasonal density variations in the upper atmosphere. Nature 188:202–204Google Scholar
  128. Priester W, Roemer M, Schmidt-Kaler T (1963) Apparent relation between solar activity and the 440 Mc/s radar distance of Venus. Mitteilungen der Sternwarte Bonn 1962:2 pp; Nature 196:464–465Google Scholar
  129. Priester W, Römer M, Volland H (1967) The physical behavior of the upper atmosphere deduced from satellite drag data. Space Sci Rev 6:707–780Google Scholar
  130. Priester W, Hoell J, Blome H-J (1989) Das Quantenvakuum und die kosmologische Konstante. Wie alt ist das Universum? Phys Bl 45:51–56Google Scholar
  131. Priester W, Hoell J, Blome H-J (1995) The scale of the universe: a unit of length. Comments Astrophys 17:327–342Google Scholar
  132. Priester W, Hoell J, van de Bruck C (1996a) Friedmann-Lemaître model derived from the Lyman alpha forest in quasar spectra. In: Trimble V, Reisenegger A (eds) Clusters, lensing and the future of the universe. Proceedings of the ASP Conference 88:286–289Google Scholar
  133. Priester W, Hoell J, Liebscher D-E, van de Bruck C (1996b) Friedmann-Lemaître model derived from the Lyman alpha forest in quasar spectra. In: Gnedin YN, Grib AA, Mostepaneko VM (eds) Proceedings of the third Alexander Friedmann international seminar on gravitation and cosmology. Friedmann Laboratory, St. Petersburg, pp 52–67Google Scholar
  134. Rauch M (1998) The Lyman alpha forest in the spectra of quasistellar objects. Annu Rev Astron Astrophys 36:267–316Google Scholar
  135. Sahni V, Feldman H, Stebbins A (1992) Loitering universe. Astrophys J 385:1–8Google Scholar
  136. Schmidt M (1970) Space distrbution and luminosity functions of quasars. Astrophys J 162:371–379 (editorial footnote by S. Chandrasekhar)Google Scholar
  137. Schuchardt KGH, Priester W, Blum PW, Peters HG (1985) Lower thermospheric density structure derived from late decay phases of satellite orbits. Adv Space Res 5:179–182Google Scholar
  138. Schuchardt KGH, Priester W, Blum PW, Peters HG (1986) Anomalous perigee shift and eccentricity variation due to air drag in the reentry phase. In: Re-entry of space debris. ESA Publications, Noordwijk, pp 55–59Google Scholar
  139. Shklovsky J (1967) On the nature of the “standard” absorption spectrum of the quasi-stellar objects. Astrophys J 150:L1–L3Google Scholar
  140. Stocke JT, Shull JM, Penton SV (2004) The baryon content of the local intergalactic medium. In: From planets to cosmology. Space Telescope Science Institute, Baltimore, MDGoogle Scholar
  141. Streeruwitz E (1975) Vacuum fluctuations of a quantized scalar field in a Robertson-Walker universe. Phys Rev D 11:3378–3383Google Scholar
  142. Thomas J, Schulz H (2001) Incompatibility of a comoving Lyα forest with supernova-Ia luminosity distances. Astron Astrophys 37:1–10Google Scholar
  143. van de Bruck C, Priester W (1996) Quasar pairs testing the bubble wall model. In: Trimble V, Reisenegger A (eds) Clusters, lensing and the future of the universe. Proceedings of the ASP Conference 88:290–293Google Scholar
  144. van de Bruck C, Priester W (1999) The cosmological constant Λ, the age of the universe and dark matter: clues from the Lyα-forest. In: Klapdor-Kleingrothaus HV, Baudis L (eds) Dark98. Proceedings of the second international workshop on dark matter. Institute of Physics Press, Bristol, pp 181–196Google Scholar
  145. van de Bruck C, Soika M, Priester W (1998) Aktuelle Modelle der Kosmologie. Astron Raumfahrt (Berl) 35:30–33Google Scholar
  146. Volland H, Wulf-Mathies C, Priester W (1972) On the annual and semiannual variations of the thermospheric density. J Atmos Terr Phys 34:1053–1063Google Scholar
  147. Wetterich C (1988) Cosmology and the fate of dilatation symmetry. Nucl Phys B 302:668–696Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • James Overduin
    • 1
  • Hans-Joachim Blome
    • 2
  • Josef Hoell
    • 3
  1. 1.Gravity Probe B, Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  2. 2.Aerospace DepartmentUniversity of Applied SciencesAachenGermany
  3. 3.German Aerospace Center (DLR), Space Management, Space Science (RD-RX)BonnGermany

Personalised recommendations