Naturwissenschaften

, Volume 94, Issue 3, pp 228–236

Biomolecules preserved in ca. 168 million year old fossil conifer wood

  • Leszek Marynowski
  • Angelika Otto
  • Michał Zatoń
  • Marc Philippe
  • Bernd R. T. Simoneit
Short Communication

Abstract

Biomarkers are widely known to occur in the fossil record, but the unaltered biomolecules are rarely reported from sediments older than Paleogene. Polar terpenoids, the natural products most resistant to degradation processes, were reported mainly from the Tertiary conifers, and the oldest known are Cretaceous in age. In this paper, we report the occurrence of relatively high concentrations of ferruginol derivatives and other polar diterpenoids, as well as their diagenetic products, in a conifer wood Protopodocarpoxylon from the Middle Jurassic of Poland. Thus, the natural product terpenoids reported in this paper are definitely the oldest polar biomolecules detected in geological samples. The extracted phenolic abietanes like ferruginol and its derivatives (6,7-dehydroferruginol, sugiol, 11,14-dioxopisiferic acid) are produced only by distinct conifer families (Cupressaceae s. l., Podocarpaceae and Araucariaceae), to which Protopodocarpoxylon could belong based on anatomical characteristics. Therefore, the natural product terpenoids are of great advantage in systematics of fossil plant remains older than Paleogene and lacking suitable anatomical preservation.

Keywords

Biomolecules Fossil conifer wood Middle Jurassic 

References

  1. Alonso J, Arillo A, Barron E, Corral JC, Grimalt J, Lopez JF, Lopez R, Martinez-Delclos X, Ortuno V, Penalver E, Trincao PR (2000) A new fossil resin with biological inclusions in Lower Cretaceous deposits from Alava (Northern Spain, Basque–Cantabrian Basin). J Paleontol 74:158–178CrossRefGoogle Scholar
  2. Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Linnean Society Symposium Series 10, Academic, London, pp 139–165Google Scholar
  3. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260CrossRefGoogle Scholar
  4. Bianchi G (1995) Plant waxes. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, pp 175–222Google Scholar
  5. Briggs DEG, Evershed RP, Lockheart MJ (2000) The biomolecular paleontology of continental fossils. In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective, Paleobiology 26(Suppl):169–193Google Scholar
  6. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefGoogle Scholar
  7. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870PubMedCrossRefGoogle Scholar
  8. Cambie RC, Cox RE, Croft KD, Sidwell D (1983) Phenolic diterpenoids of some podocarps. Phytochemistry 22:1163–1166CrossRefGoogle Scholar
  9. Collinson ME, Rember W, Finch P, Brain APR, Gupta NS, Pancost RD (2005) Morphological, anatomical, ultrastructural and macromolecular preservation of leaves from the Miocene of Clarkia, Idaho, USA. Geochim Cosmochim Acta 69 (Suppl):A341Google Scholar
  10. Elie M, Faure P, Michels R, Landais P, Griffault L (2000) Natural and laboratory oxidation of low-organic-carbon-content sediments: comparison of chemical changes in hydrocarbons. Energy Fuels 14:854–861CrossRefGoogle Scholar
  11. Enzell CR, Ryhage R (1967) Mass spectrometric studies of diterpenes.3. Aromatic diterpenes. Arkiv Kemi 26:425–434Google Scholar
  12. Franich RA, Gowar AP, Volkman JK (1979) Secondary diols of Pinus radiata needle epicuticular wax. Phytochemistry 18:1563–1564CrossRefGoogle Scholar
  13. Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, Cambridge, UKGoogle Scholar
  14. Grimalt JO, Simoneit BRT, Hatcher PG, Nissenbaum A (1988) The molecular composition of ambers. Org Geochem 13:677–690CrossRefGoogle Scholar
  15. Hegnauer R (1962) Chemotaxonomie der Pflanzen. Band 1. Birkhäuser, BaselGoogle Scholar
  16. Hegnauer R (1986) Chemotaxonomie der Pflanzen. Band 7. Birkhäuser, BaselGoogle Scholar
  17. Jackson MJ, Powell TG, Summons RE, Sweet IP (1986) Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years. Nature 322:727–729CrossRefGoogle Scholar
  18. Kopik J (1998) Lower and Middle Jurassic of the north-eastern margin of the Upper Silesian coal basin. Biul Inst Geol 378:67–120 [In Polish, with English summary]Google Scholar
  19. Matyja BA, Wierzbowski A (2000) Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geol Pol 50:191–209Google Scholar
  20. Matyja BA, Wierzbowski A (2003) Biostratygrafia amonitowa formacji częstochowskich iłów rudonośnych (najwyższy bajos-górny baton) z odsłonięć w Częstochowie. Tomy Jurajskie 1:3–6Google Scholar
  21. Otto A, Simoneit BRT (2001) Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochim Cosmochim Acta 65:3505–3527CrossRefGoogle Scholar
  22. Otto A, Wilde V (2001) Sesqui-, di-, and triterpenoids as chemosystematic markers in Extant conifers—a review. Bot Rev 67:141–238Google Scholar
  23. Otto A, Kvaček J, Goth K (1999) Biomarkers from the Taxodiaceous conifer Sphenolepis Pecinovensis Kvaček and resin from Bohemian Cenomanian. Acta Paleobot Suppl 2:153–157Google Scholar
  24. Otto A, White JD, Simoneit BRT (2002a) Natural product terpenoids in Eocene and Miocene conifer fossils. Science 297:1543–1545PubMedCrossRefGoogle Scholar
  25. Otto A, Simoneit BRT, Wilde V, Kunzmann L, Püttmann W (2002b) Terpenoid composition of three fossil resins from Cretaceous and Tertiary conifers. Rev Palaeobot Palynol 120:203–215CrossRefGoogle Scholar
  26. Otto A, Simoneit BRT, Rember WC (2003) Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Rev Palaeobot Palynol 126:225–241CrossRefGoogle Scholar
  27. Otto A, Simoneit BRT, Rember WC (2005) Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia formation, Idaho, USA. Org Geochem 36:907–922CrossRefGoogle Scholar
  28. Paull R, Michaelsen BH, McKirdy DM (1998) Fernenes and other triterpenoid hydrocarbons in Dicroidium-bearing Triassic mudstones and coals from South Australia. Org Geochem 29:1331–1342CrossRefGoogle Scholar
  29. Peters, KE, Walters, CC, Moldowan, JM (2005) The biomarker guide, vol 1: biomarkers and isotopes in the environment and human history. Cambridge University Press, Cambridge, UKGoogle Scholar
  30. Philippe M, Zijlstra G, Bamford M (2002) Proposal to conserve the name Protopodocarpoxylon Eckhold (Fossil, Gymnospermae, Coniferales) with a conserved type. Taxon 51:207–208CrossRefGoogle Scholar
  31. Philp RP (1985) Fossil fuel biomarkers, applications and spectra. Methods in geochemistry and Geophysics 23, AmsterdamGoogle Scholar
  32. Simoneit BRT (1986) Cyclic terpenoids of the geosphere. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier, Amsterdam, pp 43–99Google Scholar
  33. Stefanova M, Oros DR, Otto A, Simoneit BRT (2002) Polar aromatic biomarkers in the Miocene Maritza-East lignite, Bulgaria. Org Geochem 33:1079–1091CrossRefGoogle Scholar
  34. Wolff GA, Trendel JM, Albrecht P (1989) Novel monoaromatic triterpenoid hydrocarbons occurring in sediments. Tetrahedron 45:6721–6728CrossRefGoogle Scholar
  35. Zatoń M, Marynowski L (2004) Konzentrat–Lagerstätte-type carbonate concretions from the uppermost Bajocian (Middle Jurassic) of the Częstochowa area, south-central Poland. Geol Q 48:339–350Google Scholar
  36. Zatoń M, Marynowski L (2006) Ammonite fauna from uppermost Bajocian (Middle Jurassic) calcitic concretions from the Polish Jura—biogeographical and taphonomical implications. Geobios 39:426–442CrossRefGoogle Scholar
  37. Zatoń M, Barbacka M, Marynowski L, Krzystanek J (2006) Sagenopteris (Caytoniales) with its possible preserved biomarkers from the Bathonian of the Polish Jura, south-central Poland. Neues Jahrb Geol Palaeontol Monatsh 7:385–402Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Leszek Marynowski
    • 1
  • Angelika Otto
    • 2
  • Michał Zatoń
    • 1
  • Marc Philippe
    • 3
  • Bernd R. T. Simoneit
    • 4
  1. 1.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland
  2. 2.Forschungsinstitut SenckenbergSektion PaläobotanikFrankfurt/MainGermany
  3. 3.Université Claude Bernard Lyon 1 and UMR 5125 du CNRSVilleurbanne cedexFrance
  4. 4.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations