Advertisement

Naturwissenschaften

, Volume 94, Issue 2, pp 122–127 | Cite as

Women infected with parasite Toxoplasma have more sons

  • Š. Kaňková
  • J. Šulc
  • K. Nouzová
  • K. Fajfrlík
  • D. Frynta
  • J. Flegr
Short Communication

Abstract

The boy-to-girl ratio at birth (secondary sex ratio) is around 0.51 in most populations. The sex ratio varies between societies and may be influenced by many factors, such as stress and immunosuppression, age, primiparity, the sex of the preceding siblings and the socioeconomic status of the parents. As parasite infection affects many immunological and physiological parameters of the host, we analyzed the effect of latent toxoplasmosis on sex ratios in humans. Clinical records of 1,803 infants born from 1996 to 2004 contained information regarding the mother’s age, concentration of anti-Toxoplasma antibodies, previous deliveries and abortions and the sex of the newborn. The results of our retrospective cohort study suggest that the presence of one of the most common parasites (with a worldwide prevalence from 20 to 80%), Toxoplasma gondii, can influence the secondary sex ratio in humans. Depending on the antibody concentration, the probability of the birth of a boy can increase up to a value of 0.72, C.I.95 = (0.636, 0.805), which means that for every 260 boys born, 100 girls are born to women with the highest concentration of anti-Toxoplasma antibodies. The toxoplasmosis associated with immunosuppression or immunomodulation might be responsible for the enhanced survival of male embryos. In light of the high prevalence of latent toxoplasmosis in most countries, the impact of toxoplasmosis on the human population might be considerable.

Keywords

Human sex ratio Secondary sex ratio Immunosuppression Manipulation hypothesis Trivers–Willard hypothesis 

Notes

Acknowledgements

The authors thank M. Maly, A. Kubena and especially S. Krackow for help with statistical analysis and P. Kodym and J. Havlíček for discussion and comments on this manuscript. This research was supported by the Grant Agency of the Czech Republic 206/05/H012 and by the Czech Ministry of Education (grant 0021620828). The study was approved by the IRB Faculty of Science, Charles University, and complied with the current laws of the Czech Republic.

References

  1. Beatie CP (1982) The ecology of toxoplasmosis. Ecol Dis 1(1):13–20Google Scholar
  2. Berdoy M, Webster JP, Macdonald DW (1995) Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology 111:403–409PubMedGoogle Scholar
  3. Berdoy M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc R Soc Lond B Biol Sci 267:1591–1594CrossRefGoogle Scholar
  4. Brown JE (1969) Field experiments on the movements of Apodemus sylvaticus L., using trapping and tracking techniques. Oecologia 2:198–222CrossRefGoogle Scholar
  5. Chacon-Pugnau GC, Jaffe K (1996) Sex ratio at birth deviations in modern Venezuela: the Trivers–Willard effect. Soc Biol 43:257–270Google Scholar
  6. Christiansen OB, Pedersen B, Nielsen HS, Andersen AMN (2004) Impact of the sex of first child on the prognosis in secondary recurrent miscarriage. Hum Reprod 19:2946–2951PubMedCrossRefGoogle Scholar
  7. Čiháková J, Frynta D (1996) Intraspecific and interspecific behavioural interactions in the wood mouse (Apodemus sylvaticus) and the yellow-necked mouse (Apodemus flavicollis) in a neutral cage. Folia Zool 45:105–113Google Scholar
  8. Davis DL, Gottlieb MB, Stampnitzky JR (1998) Reduced ratio of male to female births in several industrial countries: a sentinel health indicator? JAMA 279(13):1018–1023PubMedCrossRefGoogle Scholar
  9. Dunn AM, Terry RS, Smith JE (2001) Transovarial transmission in the microsporidia. Adv Parasitol 48:57–100PubMedCrossRefGoogle Scholar
  10. Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966:290–303PubMedCrossRefGoogle Scholar
  11. Evdokimova VN, Nikita TV, Lebedev IN, Sukhanova NN, Nazarenko SA (2000) Sex ratio in early embryonal mortality in man. Ontogenez 31:251–257PubMedGoogle Scholar
  12. Filisetti D, Candolfi E (2004) Immune response to Toxoplasma gondii. Ann Ist Super Sanità 40:71–80PubMedGoogle Scholar
  13. Flegr J, Zitkova S, Kodym P, Frynta D (1996) Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology 113:49–54PubMedGoogle Scholar
  14. Flegr J, Havlíček J, Kodym P, Maly M, Smahel Z (2002) Increased risk of traffic accidents in subjects with latent toxoplasmosis: a retrospective case-control study. BMC Infect Dis 2:art–11CrossRefGoogle Scholar
  15. Flegr J, Hrdá Š, Kodym P (2005) Influence of latent toxoplasmosis on human health. Folia Parasitol 52:199–204PubMedGoogle Scholar
  16. Frynta D (1994) Exploratory behaviour in 12 Palaearctic mice species (Rodentia: Muridae): A comparative study using “free exploration” test. Acta Soc Zool Bohem 57:173–182Google Scholar
  17. Frynta D, Slábová M, Volfová R, Třeštíková H, Munclinger P (2005) Aggression and commensalism in house mouse: a comparative study across Europe and Near East. Aggress Behav 31:283–293CrossRefGoogle Scholar
  18. Grant V (1998) Maternal personality, evolution and the sex ratio: do mothers control the sex of the infant? Routledge, LondonGoogle Scholar
  19. Havlíček J, Gašová Z, Smith AP, Zvára KJ, Flegr J (2001) Decrease of psychomotor performance in subjects with latent “asymptomatic” toxoplasmosis. Parasitology 122:515–520PubMedCrossRefGoogle Scholar
  20. Hostomská L, Jírovec O, Horáěková M, Hrubcová M (1957) Účast toxoplasmické infekce matky při vniku mongoloidismu dítěte. (The role of toxoplasmosis in the mother in the development of mongolism in the child). Českoslov Pediatr 12:713–723Google Scholar
  21. Hutchinson WM, Bradley M, Cheyne WM, Wells BWP, Hay J (1980) Behavioural abnormalities in Toxoplasma-infected mice. Ann Tropic Med Parasitol 74:337–345Google Scholar
  22. Jacobsen R, Moller H, Mouritsen A (1999) Natural variation in the human sex ratio. Hum Reprod 14:3120–3125PubMedCrossRefGoogle Scholar
  23. James WH (1996) Evidence that mammalian sex ratio at birth are partially controlled by parental hormone levels at the time of conception. J Theor Biol 180:271–286PubMedCrossRefGoogle Scholar
  24. James WH (2006) Offspring sex ratio at birth as markers of paternal endocrine disruption. Environ Res 100:77–85PubMedCrossRefGoogle Scholar
  25. Kellokumpu-Lehtinen P, Pelliniemi LJ (1984) Sex ratio of human conceptuses. Obst Gynecol 64:220–222Google Scholar
  26. Kirby DRS (1970) The egg and immunology. Proc R Soc Med 63:59PubMedGoogle Scholar
  27. Kirby DRS, McWhirter KG, Teitelbaum MS, Darlington CD (1967) A possible immunological influence on sex ratio. Lancet 1:139–140CrossRefGoogle Scholar
  28. Knight J (2001) Meet the Herod bug. Nature 412:12–14PubMedCrossRefGoogle Scholar
  29. Krackow S (2005) Agonistic onset during development differentiates wild house mouse male (Mus domesticus). Naturwissenschaften 92:78–81PubMedCrossRefGoogle Scholar
  30. Krackow S, Tkadlec E (2001) Analysis of brood sex ratios: implications of offspring clustering. Behav Ecol Sociobiol 50:293–301CrossRefGoogle Scholar
  31. Milki AA, Jun SH, Hinckley MD, Westphal LW, Giudice LC, Behr B (2003) Comparison of the sex ratio with blastocyst transfer and cleavage stage transfer. J Assist Reprod Genet 20(8):323–326PubMedCrossRefGoogle Scholar
  32. Pocock MJO, Hauffe HC, Searle JB (2005) The genus Mus as a model for evolutionary studies. Biol J Linn Soc 84:565–583CrossRefGoogle Scholar
  33. Renkonen KO, Makela R, Lehtovaara R (1962) Factor affecting the human sex ratio. Nature 194:308PubMedCrossRefGoogle Scholar
  34. Rice WR, Gaines SD (1994) Extending nondirectional heterogeneity tests to evaluate simply ordered alternative hypotheses. Proc Natl Acad Sci USA 91:225–226PubMedCrossRefGoogle Scholar
  35. Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures, 3rd edn. Chapman & Hall, Boca RatonGoogle Scholar
  36. Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258PubMedCrossRefGoogle Scholar
  37. Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92PubMedCrossRefGoogle Scholar
  38. Vatten LJ, Skjaerven R (2004) Offspring sex and pregnancy outcome by length of gestation. Early Hum Dev 76(1):47–54PubMedCrossRefGoogle Scholar
  39. Webster JP (1994) The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology 109:583–589PubMedCrossRefGoogle Scholar
  40. Wilson K, Hardy ICW (2001) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (ed) Sex ratios. Cambridge Univ Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Š. Kaňková
    • 1
  • J. Šulc
    • 2
  • K. Nouzová
    • 3
  • K. Fajfrlík
    • 4
  • D. Frynta
    • 5
  • J. Flegr
    • 1
  1. 1.Department of ParasitologyCharles UniversityPrague 2Czech Republic
  2. 2.Centre of Reproductive MedicinePrague 5Czech Republic
  3. 3.GynCentrumPrague 9Czech Republic
  4. 4.Department of Microbiology, Faculty of Medicine in PilsenCharles UniversityPlzeňCzech Republic
  5. 5.Department of ZoologyCharles UniversityPrague 2Czech Republic

Personalised recommendations