Naturwissenschaften

, Volume 94, Issue 1, pp 61–64 | Cite as

Antennally mediated negative feedback regulation of pheromone production in the pine engraver beetle, Ips pini

  • Matthew D. Ginzel
  • Jeremy C. Bearfield
  • Christopher I. Keeling
  • Colin C. McCormack
  • Gary J. Blomquist
  • Claus Tittiger
Short Communication

Abstract

Bark beetles use monoterpenoid aggregation pheromones to coordinate host colonization and mating. These chemical signals are produced de novo in midgut cells via the mevalonate pathway, and pheromone production may be regulated by a negative feedback system mediated through the antennae. In this study, we explored the effect of antennectomy on pheromone production and transcript levels of key mevalonate pathway genes in juvenile hormone III-treated male pine engraver beetles, Ips pini (Say). Antennectomized males produced significantly greater amounts of pheromone than podectomized males and those with intact antennae. Likewise, mRNA levels of three mevalonate pathway genes important in pheromone biosynthesis were measured by quantitative real-time PCR and found to be induced to a greater extent with antennectomy, suggesting a transcriptional regulation of pheromone production.

Keywords

Ips pini Pheromones Antennectomy Juvenile hormone Mevalonate pathway 

References

  1. Bearfield JC, Keeling CI, Young S, Blomquist GJ, Tittiger C (2006) Isolation, endocrine regulation and mRNA distribution of the 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMG-S) gene from the pine engraver, Ips pini (Coleoptera: Scolytidae). Insect Mol Biol 15:187–196PubMedCrossRefGoogle Scholar
  2. Birch MC, Light DM, Wood DL, Browne LE, Silverstein RM, Bergot BJ, Ohloff G, West JR, Young JC (1980) Pheromonal attraction and allomonal interruption of Ips pini in California by the enantiomers of ipsdienol. J Chem Ecol 6:703–717CrossRefGoogle Scholar
  3. Browne LE (1972) An emergence cage and refrigerator collector for wood-boring insects and their associates. J Econ Entomol 65:1499–1501Google Scholar
  4. Dickens JC, McGovern WL, Wiygul G (1988) Effects of antennectomy and a juvenile hormone analog on pheromone production in the boll weevil (Coleoptera: Curculionidae). J Entomol Sci 23:52–58Google Scholar
  5. Dickens JC, Oliver JE, Hollister B, Davis JC, Klun JA (2002) Breaking a paradigm: male-produced aggregation pheromone for the Colorado potato beetle. J Exp Biol 205:1925–1933PubMedGoogle Scholar
  6. Eigenheer AL, Keeling CI, Young S, Tittiger C (2003) Comparison of gene representation in midguts from two phytophagous insects, Bombyx mori and Ips pini, using expressed sequence tags. Gene 316:127–136PubMedCrossRefGoogle Scholar
  7. Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ (2005) Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc Natl Acad Sci USA 102:9760–9765PubMedCrossRefGoogle Scholar
  8. Hall GM, Tittiger C, Andrews GL, Mastick GS, Kuenzli M, Luo X, Seybold SJ, Blomquist GJ (2002) Midgut tissue of male pine engraver, Ips pini, synthesizes monoterpenoid pheromone components ipsdienol de novo. Naturwissenschaften 89:79–83PubMedCrossRefGoogle Scholar
  9. Keeling CI, Blomquist GJ, Tittiger C (2004) Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae). Naturwissenschaften 91:324–328PubMedCrossRefGoogle Scholar
  10. Keeling CI, Bearfield JC, Young S, Blomquist GJ, Tittiger C (2006) Effects of juvenile hormone on gene expression in the pheromone-producing midgut of the pine engraver beetle, Ips pini. Insect Mol Biol 15:207–216PubMedCrossRefGoogle Scholar
  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  12. Mustaparta H, Angst ME, Lanier GN (1979) Specialization of olfactory cells to insect- and host-produced volatiles in the bark beetle Ips pini (Say). J Chem Ecol 5:109–123CrossRefGoogle Scholar
  13. Raffa KF (2001) Mixed messages across multiple trophic levels: the ecology of bark beetle chemical communication systems. Chemoecology 11:49–65CrossRefGoogle Scholar
  14. Seybold SJ, Quilici DR, Tillman JA, Vanderwel D, Wood DL, Blomquist GJ (1995) De novo biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark beetles Ips paraconfusus Lanier and Ips pini (Say) (Coleoptera: Scolytidae). Proc Natl Acad Sci USA 92:8393–8397PubMedCrossRefGoogle Scholar
  15. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New YorkGoogle Scholar
  16. Tillman JA, Holbrook GL, Dallara PL, Schal C, Wood DL, Blomquist GJ, Seybold SJ (1998) Endocrine regulation of de novo aggregation pheromone biosynthesis in the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Insect Biochem Mol Biol 28:705–715CrossRefGoogle Scholar
  17. Tillman JA, Lu F, Staehle L, Donaldson Z, Dwinell SC, Tittiger C, Hall GM, Storer AJ, Blomquist GJ, Seybold SJ (2004) Juvenile hormone regulates de novo isoprenoid aggregation pheromone biosynthesis in pine bark beetle, Ips spp. (Coleoptera: Scolytidae), through transcriptional control of HMG-CoA reductase. J Chem Ecol 30:2459–2494PubMedCrossRefGoogle Scholar
  18. Vité JP, Bakke A, Renwick JAA (1972) Pheromones in Ips (Coleoptera: Scolytidae): occurrence and production. Can Entomol 104:1967–1975CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Matthew D. Ginzel
    • 1
    • 2
  • Jeremy C. Bearfield
    • 1
  • Christopher I. Keeling
    • 1
    • 3
  • Colin C. McCormack
    • 1
  • Gary J. Blomquist
    • 1
  • Claus Tittiger
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoUSA
  2. 2.Department of Entomology and Department of Forestry & Natural Resources, Hardwood Tree Improvement and Regeneration CenterPurdue UniversityWest LafayetteUSA
  3. 3.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada

Personalised recommendations