, Volume 93, Issue 12, pp 603–609 | Cite as

Changes in tropopause height for the Eurasian region determined from CARDS radiosonde data

  • Juan A. AñelEmail author
  • Luis Gimeno
  • Laura de la Torre
  • Raquel Nieto
Short Communication


Previous studies have identified the tropopause height (TH) as a promising fingerprint of climatic change. In the present paper, we report variations in TH for the Eurasian region over the period 1973–1998 and analyse the influence of the Northern Annular Mode (NAM) on these variations. As previous studies indicate that the greatest increases in TH occur in the extratropics, we focused our attention on this area. We applied a set of homogenization procedures to radiosonde data and considered three different scenarios that take into account change points and the main volcanic eruptions over the study period. Our results demonstrate that the number of stations with positive TH trends is very sensitive to the quality of data and the methods used to remove inhomogeneities. Consequently, when change points were included in the analysis, the number of stations with positive trends decreased markedly. Furthermore, stratospheric NAM appears to control TH in stations located at latitudes higher than 55°N.


Tropopause Radiosonde data Parallel climate model 



We would like to thank John R. Lanzante for his collaboration in performing the homogenization procedures. We also thank David Parker, Dian J. Seidel, Imke Durre and Benjamin D. Santer for their helpful comments. Finally, we would like to acknowledge the assistance of José M. Castanheira. This work has been founded by the Spanish Science Ministry through TROJET project.

Supplementary material

114_2006_147_Fig3_ESM.jpg (433 kb)
Supplementary Fig. S1

Thickness for the 50–100 hPa layer computed from NCEP/NCAR reanalysis for the period 1973–1998 (JPEG 468 kb)

114_2006_147_Fig4_ESM.jpg (508 kb)
Supplementary Fig. S2

Thickness for the 400–1000 hPa layer computed from NCEP/NCAR reanalysis for the period 1973–1998 (JPEG 390 kb)


  1. Ambaum MHP, Hoskins BJ (2002) The NAO troposphere–stratosphere connection. J Climate 15:1969–1978CrossRefGoogle Scholar
  2. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584CrossRefPubMedGoogle Scholar
  3. de la Torre L, Gimeno L, Añel JA, Nieto R (2006) Study of troposphere–stratosphere coupling through the Northern Annular Mode. J Atmos Sol-Terr Phys 68:989–998 DOI 10.1016/j.jastp.2005.12.003 CrossRefGoogle Scholar
  4. Eskridge RE, Alduchov OA, Chernykh IV, Panmao Z, Polansky AC, Doty SR (1995) A Comprehensive Aerological Reference Data Set (CARDS): rough and systematic errors. Bull Am Meteorol Soc 76:1759–1775CrossRefGoogle Scholar
  5. Gibson JK, Kållberg P, Uppala S, Hernandez A, Nomura A, Serrano E (1997) ERA description. ECMWF Re-anal. Proj. Rep. Ser. 1, Eur. Cent. for Medium-Range Weather Forecast, Reading, EnglandGoogle Scholar
  6. Highwood EJ, Hoskins BJ, Berrisford P (2000) Properties of the arctic tropopause. Q J R Meteorol Soc 126:1515–1532CrossRefGoogle Scholar
  7. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  8. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  9. Lanzante JR (1996) Resistant, robust and nonparametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol 16:1197–1226CrossRefGoogle Scholar
  10. Lanzante JR (1998) Correction to “Resistant, robust and nonparametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data.” Int J Climatol 18:235Google Scholar
  11. Lanzante JR, Klein SA, Seidel DJ (2003a) Temporal homogenization of monthly radiosonde temperature data. Part I. Methodology. J Climate 16:224–240CrossRefGoogle Scholar
  12. Lanzante JR, Klein SA, Seidel DJ (2003b) Temporal homogenization of monthly radiosonde temperature data. Part II. Trends, sensitivities, and MSU comparison. J Climate 16:241–262CrossRefGoogle Scholar
  13. Parker DE, Cox DI (1995) Towards a consistent global climatological rawinsonde data-base. Int J Climatol 15:473–496Google Scholar
  14. Ramaswamy V, Schwarzkopf MD, Randel WJ (1996) Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature 382:616–618CrossRefGoogle Scholar
  15. Ramaswamy V, Chanin ML, Angell J, Barnett J, Gaffen D, Gelman M, Keckhut P, Koshelkov Y, Labitzke K, Lin JJR, O’Neill A, Nash J, Randel W, Rood R, Shine K, Shiotani M, Swinbank R (2001) Stratospheric temperature trends: observations and model simulations. Rev Geophys 39:71–122CrossRefGoogle Scholar
  16. Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalysis. J Geophys Res 105:15509–15524CrossRefGoogle Scholar
  17. Santer BD, Sausen R, Wigley TML, Boyle JS, AchutaRao K, Doutriaux C, Hansen JE, Meehl GA, Roeckner E, Ruedy R, Schmidt G, Taylor KE (2003a) Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: decadal changes. J Geophys Res 108:4002. DOI 10.1029/2002JD002258 CrossRefGoogle Scholar
  18. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Brüggemann W (2003b) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483CrossRefPubMedGoogle Scholar
  19. Santer BD, Wigley TML, Simmons AJ, Kållberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Bruggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109:D21104. DOI 10.1029/2004JD005075 CrossRefGoogle Scholar
  20. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Z 12:131–136CrossRefGoogle Scholar
  21. Seidel DJ, Lanzante JR (2004) An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J Geophys Res 109:D14108. DOI 10.1029/2003J;D004414 CrossRefGoogle Scholar
  22. Seidel DJ, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106:7857–7878CrossRefGoogle Scholar
  23. Tett SFB, Mitchell JFB, Parker DE, Allen MR (1996) Human influence on the atmospheric vertical temperature structure: detection and observations. Science 274:1170–1173CrossRefPubMedGoogle Scholar
  24. Wallis TWR (1998) A subset of core stations from the Comprehensive Aerological Reference Dataset (CARDS). J Climate 11:272–282CrossRefGoogle Scholar
  25. WMO (1957) Meteorology. A three-dimensional science. Second session of the commission for aerology. WMO Bull 4(4):134–138Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Juan A. Añel
    • 1
    Email author
  • Luis Gimeno
    • 1
  • Laura de la Torre
    • 1
  • Raquel Nieto
    • 1
  1. 1.Facultad de Ciencias de OurenseUniversidad de VigoOurenseSpain

Personalised recommendations