Naturwissenschaften

, Volume 93, Issue 11, pp 519–542

Changes in earth’s dipole

Review

Abstract

The dipole moment of Earth’s magnetic field has decreased by nearly \(9\% \) over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core–mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core–mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

Keywords

Dipole moment Earth Magnetic field Core–mantle boundary South Atlantic Anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit H, Olson P (2004) Helical core flow from geomagnetic secular variation. Phys Earth Planet Inter 147:1–25CrossRefGoogle Scholar
  2. Amit H, Olson P (2006) Time-average and time-dependent parts of core flow. Phys Earth Planet Inter 155:120–139CrossRefGoogle Scholar
  3. Backus G, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, CambridgeGoogle Scholar
  4. Badhwar GD (1997) Drift rate of the South Atlantic anomaly. J Geophys Res 102:2343–2349PubMedCrossRefGoogle Scholar
  5. BEIR VII Phase 2 (2005) Health risks from exposure to low levels of ionizing radiation. The National Academy Press, Washington DCGoogle Scholar
  6. Benton ER, Voorhies CV (1987) Testing recent geomagnetic field models via magnetic flux conservation at the core–mantle boundary. Phys Earth Planet Inter 48:350–357CrossRefGoogle Scholar
  7. Biggin AJ, Thomas DN (2003) Analysis of long-term variations in the geomagnetic poloidal field intensity and evaluation of their relationship with global geodynamics. Geophys J Int 152:392–415CrossRefGoogle Scholar
  8. Birk GT, Lesch H, Konz C (2004) Solar wind induced magnetic field around the unmagnetized Earth. Astron Astrophys 420:L15–L18CrossRefGoogle Scholar
  9. Bloxham J (1986) The expulsion of magnetic flux from the Earth’s core. Geophys J R Astron Soc 87:669–678Google Scholar
  10. Bloxham J (1989) Simple models of fluid flow at the core surface derived from geomagnetic field models. Geophys J Int 99:173–182Google Scholar
  11. Bloxham J (1992) The steady part of the secular variation of the Earth’s magnetic field. J Geophys Res 97:19565–19579Google Scholar
  12. Bloxham J, Jackson A (1991) Fluid flow near the surface of Earth’s outer core. Rev Geophys 21:97–120Google Scholar
  13. Bloxham J, Jackson A (1992) Time-dependent mapping of the magnetic field at the core–mantle boundary. J Geophys Res 97:19565–19579Google Scholar
  14. Bloxham J, Gubbins D, Jackson A (1989) Geomagnetic secular variation. Philos Trans R Soc London A 329:415–502Google Scholar
  15. Bogue SW, Paul HA (1993) Distinctive field behavior following geomagnetic reversals. Geophys Res Lett 20:2399–2402Google Scholar
  16. Bottollier-Depois JF, Chau Q, Bouisset P, Kerlau G, Plawinski L, Lebaron-Jacobs L (2000) Assessing exposure to cosmic radiation during long-haul flights. Radiat Res 153(5 Pt 1):526–532PubMedCrossRefGoogle Scholar
  17. Brasseur G, Solomon S (1984) Aeronomy of the middle atmosphere. Reidel, BostonGoogle Scholar
  18. Buffett BA (1992) Constraints on magnetic energy and mantle conductivity from the forced nutation of the Earth. J Geophys Res 97:18581–19597Google Scholar
  19. Buffett BA (2000) Earth’s core and the geodynamo. Science 288:2007–2012PubMedCrossRefGoogle Scholar
  20. Buhler P, Desorgher L, Zehnder A, Daly E, Adams L (1996) Observations of the low Earth orbit radiation environment from Mir. Radiat Meas 26:917–921PubMedCrossRefGoogle Scholar
  21. Bullard EC, Freedman C, Gellman H, Nixon J (1950) The westward drift of the Earth’s magnetic field. Philos Trans R Soc Lond A 243:67–92Google Scholar
  22. Busse FH (2000) Homogeneous dynamos in planetary cores and in the laboratory. Annu Rev Fluid Mech 32:383–408CrossRefGoogle Scholar
  23. Busse FH, Grote E, Simitev R (2003) Convection in rotating spherical shells and its dynamo action. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, LondonGoogle Scholar
  24. Cain JC, Wang Z, Schmitx DR, Meyer J (1989) The geomagnetic spectrum for 1980 and core-crustal separation. Geophys J Int 97:443–447Google Scholar
  25. Carlowicz MJ, Lopez RE (2002) Storms from the sun. Joseph Henry Press, Washington DCGoogle Scholar
  26. Carlut J, Courtillot V (1998) How complex is the time-averaged geomagnetic field over the past 5 myr? Geophys J Int 134:527–544CrossRefGoogle Scholar
  27. Carlut J, Courtillot V, Hulot G (2000) Over how much time should the geomagnetic field be averaged to obtain the mean paleomagnetic field? Terra Nova 11:39–243Google Scholar
  28. Chapman S, Bartels J (1962) Geomagnetism, vols. I and II. Oxford University Press, Oxford UKGoogle Scholar
  29. Christensen U, Tilgner A (2004) Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 439:169–171CrossRefGoogle Scholar
  30. Christensen U, Olson P, Glatzmaier GA (1999) Numerical modeling of the geodynamo: a systematic parameter study. Geophys J Int 138:393–409CrossRefGoogle Scholar
  31. Clement BM (2004) Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature 428:637–640PubMedCrossRefGoogle Scholar
  32. Constable CG (2003) Geomagnetic reversals. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, LondonGoogle Scholar
  33. Constable CG, Johnson CL (2005) A paleomagnetic power spectrum. Phys Earth Planet Inter 153:61–73CrossRefGoogle Scholar
  34. Constable CG, Korte M (2005) Is Earth’s magnetic field reversing? Earth Planet Sci Lett 236:348CrossRefGoogle Scholar
  35. Constable CG, Parker RL (1988) Statistics of geomagnetic secular variation for the past 5 m.y. J Geophys Res 93:11569–11581Google Scholar
  36. Constable CG, Johnson CL, Lund SP (2000) Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes? Philos Trans R Soc London A 358:991–1008Google Scholar
  37. Courtillot V, Besse J (1987) Magnetic field reversals, polar wander, and core–mantle coupling. Science 237:1140–1147CrossRefPubMedGoogle Scholar
  38. Cox A (1975) Reversed flux as reversal mechanism. Rev Geophys Space Phys 13:35–51Google Scholar
  39. Davidson PA (2001) Introduction to magnetohydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  40. DeSantis A, Barraclough DR, Tozzi R (2003) Spatial and temporal spectra of the geomagnetic field and their scaling properties. Phys Earth Planet Inter 135:125–134CrossRefGoogle Scholar
  41. De Wijs GA (1998) The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature 392:805–807CrossRefGoogle Scholar
  42. Deme S, Reitz G, Apthy I, Hjja I, Lng E, Fehr I (1999) Doses due to the South Atlantic anomoly during the Euromir’95 mission measured by an on-board TLD system. Radiat Prot Dosim 85:301–304Google Scholar
  43. Dobson DP, Crichton WA, Vocadlo L, Jones AP, Wang Y, Uchida T, Rivers M, Sutton S, Brodholt JP (2000) In situ measurement of viscosity of liquids in the Fe–FeS system at high pressures and temperatures. Am Mineral 85:1838–1842Google Scholar
  44. Dormy E, Valet JP, Courtillot V (2000) Numerical models of the geodynamo and observational constraints. Geochem Geophys Geosyst 1(10). DOI 10.1029/2000GC000062
  45. Durante M (2002) Biological effects of cosmic radiation in low-Earth orbit. Int J Mod Phys A 17:1713–1721CrossRefGoogle Scholar
  46. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  47. Eymin C, Hulot G (2005) On surface core flows inferred from satellite magnetic data. Phys Earth Planet Inter 152:200–220CrossRefGoogle Scholar
  48. Fraser-Smith AC (1987) Centered and eccentric geomagnetic dipoles and their poles 1600–1985. Rev Geophys 25:1–16Google Scholar
  49. Gauss CF (1877) Allgemeine Theorie des Erdmagnetismus. Werke 5:121–193 (original publication in 1839, Weidmann, Leipzeg; translated into English by Sabine E and edited by Taylor R in Scientific Memoirs, vol. 2 in 1841, Taylor and Taylor, London)Google Scholar
  50. Gee J, Conde SC, Hildebrand JA, Donnelly JA, Parker RL (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor anomalies. Nature 408:827–832PubMedCrossRefGoogle Scholar
  51. Gire C, LeMouël J-L (1990) Tangentially geostrophic flow at the core–mantle boundary compatible with the observed geomagnetic secular variation: the large-scale component of the flow. Phys Earth Planet Inter 59:259–287CrossRefGoogle Scholar
  52. Gire C, LeMouël J-L, Madden T (1986) Motions of the core surface derived by SV data. Geophys J R Astron Soc 84:1–29Google Scholar
  53. Glatzmaier GA (2002) Geodynamo simulations—how realistic are they? Annu Rev Earth Planet Sci 30:237–257CrossRefGoogle Scholar
  54. Glatzmaier GA, Olson P (2005) Probing the geodynamo. Sci Am 292:50–57CrossRefGoogle Scholar
  55. Glatzmaier GA, Roberts PH (1995) A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys Earth Planet Inter 91:63–75CrossRefGoogle Scholar
  56. Glatzmaier GA, Coe RS, Hongre L, Roberts PH (1999) The role of the mantle in controlling the frequency of geomagnetic reversals. Nature 401:885–890CrossRefGoogle Scholar
  57. Glassmeier KH, Vogt A, Stadelmann Z, Buchert S (2004) Concerning long-term geomagnetic variations and space climatology. Ann Geophys 22:3669–3677CrossRefGoogle Scholar
  58. Golightly MJ, Hardy K, Quam W (1994) Radiation dosimetry during US space shuttle missions with the RME-III. Radiat Meas 23:25–42PubMedCrossRefGoogle Scholar
  59. Grote E, Busse FH, Tilgner A (2000) Convection-driven quadrupole dynamos in rotating spherical shells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60:5025–5028Google Scholar
  60. Gubbins D (1982) Finding core motions from magnetic observations. Philos Trans R Soc Lond A 306:249–256CrossRefGoogle Scholar
  61. Gubbins D (1987) Mechanism for geomagnetic polarity reversals. Nature 326:167–169CrossRefGoogle Scholar
  62. Gubbins D (1999) The distinction between geomagnetic excursions and reversals. Geophys J Int 137:F1–F3CrossRefGoogle Scholar
  63. Gubbins D (2004) Time series analysis and inverse theory for geophysicists. Cambridge University Press, CambridgeGoogle Scholar
  64. Gubbins D, Jones AL, Finlay C (2006) Fall in Earth’s magnetic field is erratic. Science 321:900–903CrossRefGoogle Scholar
  65. Gundestrup M, Storm HH (1999) Radiation induced acute myeloid leukaemias and other cancers in commercial jet cockpit crew: a population based cohort study. Lancet 354:2029–2031 (Dec 11)PubMedCrossRefGoogle Scholar
  66. Guyodo Y, Valet JP (1999) Global changes in geomagnetic intensity during the past 800 thousand years. Nature 399:249–252CrossRefGoogle Scholar
  67. Hale CJ (1987) Paleomagnetic data suggest a link between the Archaean–Proterozoic boundary and inner-core nucleation. Nature 329:233–237CrossRefGoogle Scholar
  68. Hale CJ, Dunlop DJ (1987) The intensity of the geomagnetic field at 3.5 Ga: paleointensity results from the Komati formation, Barberton Mountain Land, South Africa. Earth Planet Sci Lett 86:354–364CrossRefGoogle Scholar
  69. Hargreaves JK (1992) The solar-terrestrial environment: an introduction to geospace—the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere. Cambridge University Press, New YorkGoogle Scholar
  70. Heirtzler JR (2002) The future of the South Atlantic anomaly and implications for radiation damage in space. J Atmos Solar Terr Phys 64:1701–1708CrossRefGoogle Scholar
  71. Heller R, Merrill RT, McFadden PL (2003) Two states of paleomagnetic intensities for the past 320 million years. Phys Earth Planet Inter 135:211–223CrossRefGoogle Scholar
  72. Holme R (1998) Electromagnetic core–mantle coupling-I. Explaining decadal changes in the length of day. Geophys J Int 132:167–180CrossRefGoogle Scholar
  73. Holme R, Olsen N (2006) Core-surface flow modelling from high resolution secular variation. Geophys J Int (in press). DOI 10.1111/j1365-246X.2006.03033.x
  74. Holme R, Whaler KA (2001) Steady core flow in an azimuthally drifting reference frame. Geophys J Int 14:560–569CrossRefGoogle Scholar
  75. Hulot G, Eymin C, Langlais B, Mandea M, Olsen N (2002) Small-scale structure of the geodynamo inferred from Øersted and Magsat satellite data. Nature 416:620–623PubMedCrossRefGoogle Scholar
  76. Jackson A (1997) Time-dependency of tangentially geostrophic core surface motions. Phys Earth Planet Inter 103:293–311CrossRefGoogle Scholar
  77. Jackson A (2003) Intense equatorial flux spots on the surface of the Earth’s core. Nature 424:760–763PubMedCrossRefGoogle Scholar
  78. Jackson A, Bloxham J, Gubbins D (1993) Time-dependent flow at the core surface and conservation of angular momentum in the coupled core–mantle system. In: LeMouël J-L, Smylie DE, Herring T (eds) Dynamics of Earth’s deep interior and Earth rotation, Geophys Monogr 12(72):97–107Google Scholar
  79. Jackson A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Philos Trans R Soc Lond A 358:957–990CrossRefGoogle Scholar
  80. Jacobs JA (1984) Reversals of the Earth’s magnetic field. Adam Hilger, Bristol, UKGoogle Scholar
  81. Jault D, Gire C, LeMouël J-L (1988) Westward drift, core motions and exchange of angular momentum between core and mantle. Nature 333:353–356CrossRefGoogle Scholar
  82. Johnson CL, Constable CG (1997) The time averaged geomagnetic field: global and regional biases for 0–5 Ma. Geophys J Int 131:643–666Google Scholar
  83. Johnson CL, Constable CG, Tauxe LT (2003) Mapping long-term changes in Earth’s magnetic field (perspective article). Science 300:2044–2045PubMedCrossRefGoogle Scholar
  84. Jones CA (2000) Convection-driven geodynamo models. Philos Trans R Soc Lond A 358:873–897CrossRefGoogle Scholar
  85. Jonkers ART, Jackson A, Murray A (2003) Four centuries of geomagnetic data from historical records. Rev Geophys 41(2):11–36CrossRefGoogle Scholar
  86. Juarez MT, Tauxe L (2000) The intensity of the time-averaged geomagnetic field: the last 5 Myr. Earth Planet Sci Lett 175:169–180CrossRefGoogle Scholar
  87. Juarez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the last 160 million years. Nature 394:878–881CrossRefGoogle Scholar
  88. Kageyama A, Ochi M, Sato T (1999) Flip-flop transition of the magnetic intensity and polarity reversals in the magnetohydrodynamic dynamo. Phys Rev Lett 82:5409–5412CrossRefGoogle Scholar
  89. Kono M, Roberts PH (2002) Recent geodynamo simulations and observations of the geomagnetic field. Rev Geophys 40(4):1013CrossRefGoogle Scholar
  90. Kono M, Tanaka H (1995) Intensity of the geomagnetic field in geological time: a statistical study. In: Yukutake T (ed) The Earth’s central part: its structure and dynamics. Terrapub, Toyko, pp 75–94Google Scholar
  91. Konradi A, Badhwar GD, Braby LA (1994) Recent space shuttle observations of the South Atlantic anomaly and radiation belt models. Adv Space Res 14:911–921PubMedCrossRefGoogle Scholar
  92. Korte M, Constable CG (2005) Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochem Geophys Geosyst 6(2). DOI 10.1029/2004GC000801
  93. Kuang W, Bloxham J (1997) An earth-like numerical dynamo model. Nature 389:371–374CrossRefGoogle Scholar
  94. Kutzner C, Christensen U (2000) Effects of driving mechanisms in geodynamo models. Geophys Res Lett 27:29–32CrossRefGoogle Scholar
  95. Kutzner C, Christensen U (2002) From stable dipolar to reversing numerical dynamos. Phys Earth Planet Inter 131:29–45CrossRefGoogle Scholar
  96. Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere: the satellite perspective. Cambridge University Press, New YorkGoogle Scholar
  97. Langel RA, Estes RH, Mead GD, Fabiano EB, Lancaster ER (1980) Initial geomagnetic field model from Magsat vector data. Geophys Res Lett 7:793–796Google Scholar
  98. Larson RL, Olson P (1991) Mantle plumes control magnetic reversal frequency. Earth Planet Sci Lett 107:437–447CrossRefGoogle Scholar
  99. Lean J (2005) Living with a variable sun. Phys Today 58(6):32–38Google Scholar
  100. Leaton BR, Malin SRC (1967) Recent changes in the magnetic dipole moment of the earth. Nature 213:1110CrossRefGoogle Scholar
  101. Lin JL, Verosub KL, Roberts PA (1994) Decay of the virtual dipole moment during polarity transitions and geomagnetic excursions. Geophys Res Lett 21:525–528CrossRefGoogle Scholar
  102. Livermore RA, Vine FJ, Smith AG (1984) Plate motions and the geomagnetic field II. Jurassic to tertiary. Geophys J R Astron Soc 79:939–961Google Scholar
  103. Loper D, McCartney K (1986) Mantle plumes and the periodicity of magnetic field reversals. Geophys Res Lett 13:1525–1528Google Scholar
  104. Malin SRC (1982) Sesquicentenary of Gauss’s first measurement of the absolute value of magnetic intensity. Philos Trans R Soc Lond A 306:5–8Google Scholar
  105. Maus S, Rother M, Holme R, Luhr H, Olsen N, Haak V (2002) First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. Geophys Res Lett 29:1702–1705CrossRefGoogle Scholar
  106. Maus S, Luhr H, Balasis G, Rother M, Mandea M (2004) Introducing POMME, the Potsdam magnetic model of the Earth in CHAMP. In: Reigber C, Lühr H, Schwintzer und P, Wickert J (eds) Earth observation with CHAMP, results from three years in orbit. Springer, Berlin Heidelberg New York, pp 293–298Google Scholar
  107. Maus S, Rother M, Hemant K, Luhr H, Kuvshinov A, Olsen N (2005) Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys J Int (in press). DOI 10.1111/j.1365-246X.2006.02833x
  108. McCormack PD, Swenberg CE, Bücker H (eds) (1988) Terrestrial space radiation and its biological effects. NATO ASI series, series A: life sciences, vol 154. Plenum, New YorkGoogle Scholar
  109. McDonald KL, Gunst RH (1968) Recent trends in the Earth’s magnetic field. J Geophys Res 73:2057–2067CrossRefGoogle Scholar
  110. McElhinny MW, Senanayake WE (1982) Variations in the geomagnetic dipole 1. The past 50,000 years. J Geomagn Geoelectr 34:39–51Google Scholar
  111. McFadden PL, Merrill RT (1997) Sawtooth paleointensity and reversals of the geomagnetic field. Phys Earth Planet Inter 103:247–252CrossRefGoogle Scholar
  112. Merrill RT, McFadden PL (1999) Geomagnetic polarity transitions. Rev Geophys 37:201–226CrossRefGoogle Scholar
  113. Merrill RT, McElhinny MW, McFadden PL (1998) The magnetic field of the Earth. Academic, San DiegoGoogle Scholar
  114. Moffatt HK (1978) Magnetic field generation in electrically conducting fluids. Cambridge University Press, CambridgeGoogle Scholar
  115. Mouritsen H, Feenders G, Liedvogel M, Kropp W (2004) Migratory birds use head scans to detect the direction of the earth’s magnetic field. Curr Biol 14:1946–1949PubMedCrossRefGoogle Scholar
  116. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in \(MgSiO_{3} \). Science 304:855–857PubMedCrossRefGoogle Scholar
  117. Ohno M, Hamano Y (1992) Geomagnetic poles over the past 10,000 years. Geophys Res Lett 19:1715–1718Google Scholar
  118. Olsen N, Holme R, Hulot G, Sabaka T, Neubert T, Toeffner-Clausen L, Primdahl F, Joergensen J, Leger J-M, Barraclough D, Bloxham J, Cain J, Constable C, Golovkov V, Jackson A, Kotze P, Langlais B, Macmillan S, Mandea M, Merayo J, Newitt L, Purucker M, Risbo T, Stampe M, Thomson A, Voorhies C (2000) Oersted initial field model. Geophys Res Lett 27:3607–3610CrossRefGoogle Scholar
  119. Olson P (2002) The disappearing dipole. Nature 416:590–591CrossRefGoogle Scholar
  120. Olson P (2003) Thermal interaction of the core and mantle. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, LondonGoogle Scholar
  121. Olson P, Christensen U, Glatzmaier GA (1999) Numerical modeling of the geodynamo: mechanisms of field generation and equilibration. J Geophys Res 104:10383–10404CrossRefGoogle Scholar
  122. Olson P, Sumita I, Aurnou J (2002) Diffusive magnetic images of upwelling patterns in the core. J Geophys Res 107(12). DOI 10.1029/2001jb000384
  123. Pais A, Hulot G (2000) Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows. Phys Earth Planet Inter 118:291–316CrossRefGoogle Scholar
  124. Pan Y, Hill MJ, Zhu R, Shaw J (2004) Further evidence for low intensity of the geomagnetic field during the early Cretaceous time: using the modified Shaw method and microwave technique. Geophys J Int 157:553–564CrossRefGoogle Scholar
  125. Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319CrossRefGoogle Scholar
  126. Pinto OJ, Gonzalez WD, Pinto IRC, Gonzalez ALC, Mendes OJ (1992) The South Atlantic magnetic anomaly: three decades of research. J Atmos Terr Phys 54:1129–1134CrossRefGoogle Scholar
  127. Poirier JP (1994) Physical properties of the Earth’s core. CR Acad Sci Paris 318:341–350Google Scholar
  128. Poirier JP (2000) Introduction to the physics of the Earth’s interior. Cambridge University Press, CambridgeGoogle Scholar
  129. Raup DM (1985) Magnetic reversals and mass extinctions. Nature 314:341–343PubMedCrossRefGoogle Scholar
  130. Roberts PH, Glatzmaier GA (2000) Geodynamo theory and simulations. Rev Mod Phys 72:1081–1123CrossRefGoogle Scholar
  131. Roberts PH, Scott S (1965) On analysis of the secular variation. J Geomagn Geoelectr 17:137–151Google Scholar
  132. Sabaka TJ, Olsen N, Langel RA (2002) A comprehensive model of the quiet time, near-earth magnetic field: phase 3. Geophys J Int 151:32–68CrossRefGoogle Scholar
  133. Sabaka TJ, Olsen N, Purucker M (2004) Extending comprehensive models of the Earth’s magnetic field with Oersted and CHAMP. Geophys J Int 159(2):521–547CrossRefGoogle Scholar
  134. Sarson GR, Jones CA (1999) A convection driven geodynamo reversal model. Phys Earth Planet Inter 111:3–20CrossRefGoogle Scholar
  135. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, CambridgeGoogle Scholar
  136. Secco RA, Schloessin HH (1989) The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa. J Geophys Res 94:5887–5894Google Scholar
  137. Selkin PA, Tauxe L (2000) Long-term variations in palaeointensity. Philos Trans R Soc Lond A 358:1065–1088CrossRefGoogle Scholar
  138. Simitev R, Busse FH (2005) Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J Fluid Mech 532:365–388CrossRefGoogle Scholar
  139. Sisco GL, Chen CK (1975) The paleomagnetosphere. J Geophys Res 80:4675–4680Google Scholar
  140. Stacey FD (1992) Physics of the Earth, 3rd edn. Brookfield Press, Brisbane, AUGoogle Scholar
  141. Stevenson DJ (1987) Limits on lateral density and velocity variations in the Earth’s outer core. Geophys J R Astron Soc 88:311–319Google Scholar
  142. Stevenson DJ (1990) Fluid dynamics of core formation. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, London, UK, pp 231–249Google Scholar
  143. Takahashi F, Matsushima M, Honkura Y (2005) Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator. Science 309:459–461PubMedCrossRefGoogle Scholar
  144. Tanaka H, Kono M, Uchimura H (1995) Some global features of paleointensity in geologic time. Geophys J Int 120:97–102Google Scholar
  145. Tarduno JA, Cotrell RD, Smirnov AV (2001) High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science 291:1779–1783CrossRefGoogle Scholar
  146. Thouveny N, Creer KM, Williamson D (1993) Geomagnetic moment variations in the last 70,000 years, impact on production of cosmogenic isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 7:157–172Google Scholar
  147. Valet JP (2003) Time variations in geomagnetic intensity. Rev Geophys 41(1):1004. DOI 10.1029/2001RG000104 Google Scholar
  148. Valet J-P, Meynadier L, Guyodo Y (2005) Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435:802–805PubMedCrossRefGoogle Scholar
  149. Verosub KL, Cox A (1971) Changes in the total geomagnetic energy external to Earth’s core. J Geomagn Geoelectr 23:235–242Google Scholar
  150. Voorhies CV (1986) Steady flows at the top of Earth’s core derived from geomagnetic field models. J Geophys Res 91:12444–12466Google Scholar
  151. Walker MM, Dennis TE, Kirschvink JL (2002) The magnetic sense and its use in long-distance navigation by animals. Curr Opin Neurobiol 12:735–744PubMedCrossRefGoogle Scholar
  152. Whaler KA, Davis RG (1997) Probing the Earth’s core with geomagnetism. In: Crossley DJ (ed) Earth’s deep interior. Gordon and Breach, Amsterdam, pp 114–166Google Scholar
  153. Wicht J, Olson P (2004) A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem Geophys Geosyst 5(3). DOI 10.1029/2003GC000602
  154. Wood BJ, Halliday AN (2005) Cooling of the Earth and core formation after the giant impact. Nature 437:1345–1348PubMedCrossRefGoogle Scholar
  155. Yamamoto Y, Tsunakawa H (2005) Geomagnetic field intensity during the last 5 Myr: LTD-DHT Shaw palaeointensities from volcanic rocks of the Society Islands, French Polynesia. Geophys J Int 162:79–114CrossRefGoogle Scholar
  156. Yang S, Odah H, Shaw J (2000) Variations in the geomagnetic dipole moment over the last 12,000 years. Geophys J Int 140:158–162CrossRefGoogle Scholar
  157. Yokoyama Y, Yamazaki T (2000) Geomagnetic paleointensity variation with a 100 kyr quasi-period. Earth Planet Sci Lett 181:7–14CrossRefGoogle Scholar
  158. Yoshihara A, Hamano Y (2000) Intensity of the Earth’s magnetic field in late Archean obtained from diabase dikes of the Slave Province, Canada. Phys Earth Planet Inter 117:295–307CrossRefGoogle Scholar
  159. Yukutake T (1967) The westward drift of the Earth’s magnetic field in historic times. J Geomagn Geoelectr 19:103–116Google Scholar
  160. Zhang K, Busse FH (1989) Convection driven magnetohydrodynamic dynamos in rotating spherical shells. Geophys Astrophys Fluid Dyn 49:97–116Google Scholar
  161. Zhu RX, Pan YX, Shaw J, Li DM, Li Q (2001) Paleointensity just prior to the Cretaceous normal superchron. Phys Earth Planet Inter 128:207–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations