, Volume 93, Issue 4, pp 173–180 | Cite as

Habitat structure is associated with the expression of carotenoid-based coloration in nestling blue tits Parus caeruleus

  • Elena ArrieroEmail author
  • Juan Antonio Fargallo
Original Article


We investigated how the expression of carotenoid-based plumage coloration (lightness and chroma) in nestling blue tits Parus caeruleus is associated with forest structure in oak forests of central Spain. We found evidence of a reduced expression of carotenoid-based coloration in nestlings growing up in successionally young and structurally simple forest territories. Our results suggest that breast feather coloration can be used as an indicator of nestling quality because nestlings with more intense yellow plumage coloration had larger body size and stronger immune responses to the injection of phytohemagglutinin (PHA). Given the association of forest structural complexity with carotenoid-based plumage coloration, our findings suggest that variation in habitat structure may have a significant impact on forest birds in their first stages of life which has implications for forest management practices.


Carotenoid Habitat Structure Plumage Coloration Breeding Territory Nestle Body Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study was financially supported by projects 07M/0137/2000 (Comunidad de Madrid) to LM Carrascal and BOS2001-0587 to J Moreno (Ministerio de Ciencia y Tecnología). M Romero-Pujante, JJ Sanz, S Merino, and A Martin helped in the fieldwork, and LM. Carrascal helped with the habitat structure data. We thank R. Fletcher for statistical advices concerning spatial correlation, and JA Davila and A Machordon for assistance with the molecular sexing. J Moreno, JC Senar, and two anonymous referees made valuable comments of early versions of the manuscript. EA was supported by a fellowship from El Ventorrillo-CSIC. El Ventorrillo field station provided the necessary facilities during the fieldwork. Comunidad de Madrid authorized the study.


  1. Alatalo RV, Lundberg A (1986) Heritability and selection on tarsus length in the Pied Flycatcher (Ficedula hypoleuca). Evolution 40:574–583Google Scholar
  2. Andersson M (1994) Sexual selection. Princeton Univ. Press, Princeton, NJGoogle Scholar
  3. Arriero E, Sanz JJ, Romero-Pujante M (2006) Habitat structure in Mediterranean deciduous forests in relation to reproductive success in the Blue tit Parus caeruleus: effects operate during laying and incubation. Bird Study 53:12–19Google Scholar
  4. Blount JD, Houston DC, Møller AP (2000) Why egg yolk is yellow? Trends Ecol Evol 15:47–49CrossRefPubMedGoogle Scholar
  5. Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual atractiveness in Zebra finches. Science 300:125–127CrossRefPubMedADSGoogle Scholar
  6. Brokaw NVL, Lent RA (1999) Vertical structure. In: Hunter ML (ed) Maintaining Biodiversity in Forest Ecosystems. Cambridge Univ. Press, Cambridge, UKGoogle Scholar
  7. Brush AH (1978) Avian pigmentation. In: Brush AH (ed) Chemical Zoology. Academic, New York, pp 141–164Google Scholar
  8. Christe P, Møller AP, de Lope F (1998) Immunocompetence and nestling survival in the house martin: the tasty chick hypothesis. Oikos 83:175–179Google Scholar
  9. Cichoñ M, Dubiec A (2005) Cell-mediated immunity predicts the probability of local recruitment in nestling blue tits. J Evol Biol 18:962–966CrossRefPubMedGoogle Scholar
  10. Costa M, Morla C, Sainz H (1998) Los bosques ibéricos. Planeta, Barcelona, pp 224–241Google Scholar
  11. Cramp S, Perrins CM (1993) Blue tit. In: Cramp S, Perrins CM (eds) The birds of the western Palearctic, vol. 7. Oxford Univ. Press, London ,UK, pp 225–248Google Scholar
  12. Díaz M (2003) Herrerillo Común Parus caeruleus. In: Martí R, del Moral JC (eds) Atlas de las Aves Reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid, pp 514–515Google Scholar
  13. Eeva T, Lehikoinen E, Ronka M (1998) Air pollution fades the plumaje of the great tit. Funct Ecol 12:607–612CrossRefGoogle Scholar
  14. Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91Google Scholar
  15. Endler JA (1990) On the measurement and classification of colour in studies of animal colour patterns. Biol J Linn Soc 41:315–352Google Scholar
  16. Figuerola J, Senar JC, Pascual J (1999) The use of colorimeter in field studies of Blue tit Parus caeruleus coloration. Ardea 87:269–275Google Scholar
  17. Fitze PS, Kölliker M, Richner H (2003a) Effects of common origin and common environment on nestling plumage coloration in the Great tit (Parus major). Evolution 57:144–150PubMedGoogle Scholar
  18. Fitze PS, Tschirren B, Richner H (2003b) Carotenoid-based colour expression is determined early in nestling life. Oecologia 137:148–152CrossRefPubMedGoogle Scholar
  19. Freund RJ, Littell RC, Spector PC (1986) SAS system for linear models. SAS Institute, Cary, NCGoogle Scholar
  20. Gebhardt-Henrich S, Richner H (1998) Causes of growth variation and its consequences for fitness. In: Starck JM, Ricklefs RE (eds) Avian growth and development. Oxford Ornithology Series, New York, pp 324–339Google Scholar
  21. Goodwin TW (1984) The biochemistry of the carotenoids. Animals. vol II. Chapman and Hall, London, UKGoogle Scholar
  22. Götmark F, Ahlström M (1997) Parental preference for red mouth of chicks in a songbird. Proc R Soc Lond B 264:959–962CrossRefADSGoogle Scholar
  23. Griffiths R, Double MC, Orr K, Dawson JG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefPubMedGoogle Scholar
  24. Grether GF, Hudon J, Millie D (1999) Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proc R Soc Lond B 266:1317–1322CrossRefGoogle Scholar
  25. Hill GE (1991) Plumage coloration is a sexually selected indicator of male quality. Nature 350:337–339CrossRefADSGoogle Scholar
  26. Hill GE (1993) Geographic variation in carotenoid plumage pigmentation of male house finches Carpodacus mexicanus. Biol J Linn Soc 49:63–86CrossRefGoogle Scholar
  27. Hill GE (1999) Mate choice, male quality, and carotenoid-based plumage coloration:a review. Proceedings of the XXII International Ornithological Congress, Durban, pp 1654–1668Google Scholar
  28. Hill GE (2002) Dietary carotenoids predict plumage coloration in wild house finches. Proc R Soc Lond B 269:1119–1124CrossRefGoogle Scholar
  29. Houde AE (1997) Sex, color and mate choice in Guppies. Princeton Univ. Press, Princeton, NJGoogle Scholar
  30. Huey RB (1991) Physiological consequences of habitat selection. Am Nat 137:S91–S115 (Supp)CrossRefGoogle Scholar
  31. Hunter M (1999) Maintaining Biodiversity in Forest Ecosystems. Cambridge Univ. Press, Cambridge, UKGoogle Scholar
  32. Hõrak P, Vellau H, Ots I, Møller AP (2000) Growth conditions affect carotenoid-based plumage coloration of great tit nestlings. Naturwissenchaften 87:460–464CrossRefADSGoogle Scholar
  33. Hõrak P, Ots I, Vellau H, Spottiswoode C, Møller AP (2001) Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126:166–173CrossRefGoogle Scholar
  34. John H, Birks B (2005) Mind the gap:how open were European primeval forests? Trends Ecol Evol 20:154–156CrossRefGoogle Scholar
  35. Johnsen A, Delhey K, Andersson S, Kempenaers B (2003) Plumage colour in nestling blue tits: sexual dichromatism, condition dependence and genetic effects. Proc R Soc Lond B 270:1263–1270CrossRefGoogle Scholar
  36. Kodric-Brown A (1989) Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav Ecol Sociobiol 25:393–401CrossRefGoogle Scholar
  37. Krebs EA, Putland D (2004) Chic chicks:the evolution of chick ornamentation in rails. Behav Ecol 15:946–951CrossRefGoogle Scholar
  38. Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348CrossRefPubMedGoogle Scholar
  39. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute, Cary, NCGoogle Scholar
  40. Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311Google Scholar
  41. Lyon BE, Eadie JM, Hamilton LD (1994) Parental choice selects for ornamental plumage in American coot chicks. Nature 371:240–243CrossRefADSGoogle Scholar
  42. McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence and the information content of sexual colors: an experimental test. Am Nat 162:704–712CrossRefPubMedGoogle Scholar
  43. McGraw KJ, Gregory AJ, Parker RS, Adkins-Regan E (2003) Diet, plasma carotenoids, and sexual coloration in the Zebra finch (Taeniopygia guttata). Auk 120:400–410Google Scholar
  44. Merino S, Potti J (1996) Weather dependent effects of nest ectoparasites on their bird hosts. Ecography 19:107–113Google Scholar
  45. Merino S, Møller AP, de Lope F (2000) Seasonal changes in cell-mediated immunocompetence and mass gain in nestling barn swallows:a parasite-mediated effect? Oikos 90:327–332CrossRefGoogle Scholar
  46. Milinski M, Bakker TCM (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344:330–333CrossRefADSGoogle Scholar
  47. Moreno J, Carrascal LM, Fargallo JA, Soto-Largo E (1996) Determination of clutch size in the Blue tit Parus caeruleus in central Spain: field experiments. Ardeola 43:9–17Google Scholar
  48. Moreno J, Merino S, Sanz JJ, Arriero E, Morales J, Tomas G (2005) Nestling cell-mediated immune response, body mass and hatching date as predictors of local recruitment in the Pied flycatcher Ficedula hypoleuca. J Avian Biol 36:251–260CrossRefGoogle Scholar
  49. Morris DW (1987) Ecological scale and habitat use. Ecology 68:362–369Google Scholar
  50. Møller AP, Saino N (2004) Immune response and survival. Oikos 104:299–304CrossRefGoogle Scholar
  51. Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159Google Scholar
  52. Olson VA, Owens IPF (1998) Costly sexual signals:are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514CrossRefGoogle Scholar
  53. Orians GH, Wittenberger JF (1991) Spatial and temporal scales in habitat selection. Am Nat 137:S29–S49 (Supp)CrossRefGoogle Scholar
  54. Partali V, Liaaen-Jensen S, Slagsvold T, Lifjeld JT (1987) Carotenoids in food chain studies II. The food chain of Parus spp. Monitored by carotenoid analysis. Comp Biochem Physiol 87B:885–888Google Scholar
  55. Potti J, Montalvo S, Sánchez-Aguado FJ, Blanco D (1988) La reproducción del Herrerillo común (Parus caeruleus) en un robledal del centro de España. Ardeola 35:31–43Google Scholar
  56. Saino N, Ninni P, Calza S, De Bernardi F, Møller AP (2000) Better red than dead:carotenoid-based gape coloration reveals health status in barn swallow nestlings. Proc R Soc Lond B 267:57–61CrossRefGoogle Scholar
  57. Saino N, Ferrari R, Romano M, Martinelli R, Møller AP (2003) Experimental manipulation of egg carotenoids affects immunity of barn swallow nestlings. Proc R Soc Lond B 270:2485–2489CrossRefGoogle Scholar
  58. Saks L, Ots I, Hõrak P (2003) Carotenoid based plumage coloration of male greenfinches reflects health and immunocompetence. Oecologia 134:301–307PubMedGoogle Scholar
  59. Sanz JJ (2001) Experimentally increased insectivorous bird density results in a reduction of caterpillar density and leaf damage to Pyrenean oak. Ecol Res 16:387–394CrossRefMathSciNetGoogle Scholar
  60. Senar JC, Figuerola J, Pascual J (2002) Brighter yellow blue tits make better parents. Proc R Soc Lond B 269:257–261CrossRefGoogle Scholar
  61. Senar JC, Figuerola J, Doménech J (2003) Plumage coloration and nutritional condition in the Great tit Parus major: the roles of carotenoids and melanins differ. Naturwissenschaften 90:234–237PubMedADSGoogle Scholar
  62. Slagsvold I, Lifjeld JT (1985) Variation in plumage colour of the Great tit Parus major in relation to habitat, season and food. J Zool (Lond) 206:321–328CrossRefGoogle Scholar
  63. Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572CrossRefGoogle Scholar
  64. Suorsa P, Huhta E, Nikula A, Nikinmaa M, Jäntti A, Helle H, Hakkarainen H (2003) Forest management is associated with physiological stress in an old-growth forest passerine. Proc R Soc Lond B 270:963–969CrossRefGoogle Scholar
  65. Suorsa P, Helle H, Koivunen V, Huhta E, Nikula A, Hakkarainen H (2004) Effects of forest patch size on physiological stress and immunocompetence in an area-sensitive passerine, the Eurasian treecreeper (Certhia familiaris): an experiment. Proc R Soc Lond B 271:435–440CrossRefGoogle Scholar
  66. Svensson E, Nilsson J-Å (1995) Food supply, territory quality, and reproductive timing in the Blue tit (Parus caeruleus). Ecology 76:1804–1812Google Scholar
  67. Tschirren B, Fitze PS, Richner H (2003) Proximate mechanisms of variation in the carotenoid-based plumage coloration of nestling great tits (Parus major L.). J Evol Biol 16:91–100CrossRefPubMedGoogle Scholar
  68. Tschirren B, Fitze PS, Richner H (2005) Carotenoid-based nestling colouration and parental favouritism in the great tit. Oecologia 143:477–482CrossRefPubMedGoogle Scholar
  69. Urban JF (2005) Modelling ecological processes across scales. Ecology 86:1996–2006Google Scholar
  70. von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12CrossRefGoogle Scholar
  71. Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes:concepts and statistics. Ecology 86:1975–1987Google Scholar
  72. Zanette L, Doyle P, Trémont SM (2000) Food shortage in small fragments:evidence from an area-sensitive passerine. Ecology 81:1654–1666CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain

Personalised recommendations