, Volume 93, Issue 3, pp 119–126 | Cite as

Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafoʻou Island, Tonga

  • Józef Kazmierczak
  • Stephan Kempe
Short Communication


Calcareous or dolomitic, often secondarily silicified, laminated microbial structures known as stromatolites are important keys to reconstruct the chemical and biotic evolution of the early ocean. Most authors assume that cyanobacteria-associated microbialitic structures described from Shark Bay, Western Australia, and Exuma Sound, Bahamas, represent modern marine analogues for Precambrian stromatolites. Although they resemble the Precambrian forms macroscopically, their microstructure and mineralogical composition differ from those characterizing their purported ancient counterparts. Most Precambrian stromatolites are composed of presumably in situ precipitated carbonates, while their assumed modern marine analogues are predominantly products of accretion of grains trapped and bound by microbial, predominantly cyanobacterial, benthic mats and biofilms and only occasionally by their physicochemical activity. It has therefore been suggested that the carbonate chemistry of early Precambrian seawater differed significantly from modern seawater, and that some present-day quasi-marine or non-marine environments supporting growth of calcareous microbialites reflect the hydrochemical conditions controlling the calcification potential of Precambrian microbes better than modern seawater. Here we report the discovery of a non-marine environment sustaining growth of calcareous cyanobacterial microbialites showing macroscopic and microscopic features resembling closely those described from many Precambrian stromatolites.


Stromatolite Crater Lake Saturation Index High Lake Level Early Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We especially thank Mr. Semisi Halaholo, the government representative on Niuafoʻou, for organizing human and logistic help during our stay on the island. We also thank Ralf Hinsch for field assistance. 14C dating of stromatolites and wood samples and δ13C analyses of water samples were performed by J. van der Plicht (Centrum voor Isotopen Onderzoek, Groningen). The laboratory assistance of C. Kulicki and M. Kuzniarski (Warsaw) is greatly appreciated. Financial support was provided by the Deutsche Forschungsgemeinschaft, Polish Academy of Sciences and the Foundation for Polish Science.


  1. Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci U S A 85:1327–1329PubMedCrossRefGoogle Scholar
  2. Bertrand-Sarfati J (1976) An attempt to classify late Precambrian stromatolite microstructures. In: Walter MR (ed) Stromatolites. Developments in sedimentology 20. Elsevier, Amsterdam, pp 251–258Google Scholar
  3. Bjerrum CJ, Canfield DE (2002) Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto ion oxides. Nature 417:150–162CrossRefGoogle Scholar
  4. Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology32:473-476CrossRefGoogle Scholar
  5. Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5:161–181CrossRefGoogle Scholar
  6. Cabrol N, Wynn-Williams DD, Crawford DA, Grin EA (2001) Recent aqueous environments in Martian impact craters: an astrobiological perspective. Icarus 154:98–112CrossRefGoogle Scholar
  7. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  8. Dill RF, Shinn EA, Jones AT, Kelly K, Steinen R (1986) Giant subtidal stromatolites forming in normal salinity water. Nature 324:55–58CrossRefGoogle Scholar
  9. Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386PubMedCrossRefGoogle Scholar
  10. Fairchild IJ (1991) Origins of carbonate in Neoproterozoic stromatolites and the identification of modern analogues. Precambrian Res 53:281–299CrossRefGoogle Scholar
  11. Fairchild IJ, Marshall JD, Bertrand-Sarfati J (1990) Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauretania): influences of primary mineralogy and diagenesis. Am J Sci 290-A:46–79Google Scholar
  12. Ginsburg RN (1991) Controversies about stromatolites: vices and virtues. In: Müller DW, McKenzie JA, Weissert H (eds) Controversies in modern Geology. Academic Press, London, pp 25–36Google Scholar
  13. Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. J Geol 101:235–243PubMedCrossRefGoogle Scholar
  14. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358PubMedCrossRefGoogle Scholar
  15. Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383, 423–425CrossRefGoogle Scholar
  16. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298:2372–2374PubMedCrossRefGoogle Scholar
  17. Hofmann HJ (1969) Stromatolites from the Proterozoic Animikie and Sibley groups, Ontario. Geol Surv Can Pap 68–69:1–77Google Scholar
  18. Hofmann HJ (1975) Stratiform Precambrian stromatolites, Belcher Islands, Canada: relations between silicified microfossils and microstructure. Am J Sci 275:1121–1132CrossRefGoogle Scholar
  19. Hofmann HJ, Jackson GD (1987) Proterozoic ministromatolites with radial-fibrous fabric. Sedimentology 34:963–971CrossRefGoogle Scholar
  20. Holland HD (1984) The chemical evolution of the atmosphere and the oceans. Princeton University Press, PrincetonGoogle Scholar
  21. Horodyski RJ (1975) Stromatolites of the Lower Missoula Group (middle Proterozoic), Belt Supergroup, Glacier National Park, Montana. Precambrian Res 2:215–254CrossRefGoogle Scholar
  22. Jaggar TA (1935) Living on a volcano—an unspoiled patch of Polynesia is Niuafoo, nicknamed “Tin Can Island” by stamp collectors. Natl Geogr 68:91–106Google Scholar
  23. Kazmierczak J, Ittekott V, Degens ET (1985) Biocalcification through time: environmental challenge and cellular response. Paläontol Z 59:15–33Google Scholar
  24. Kazmierczak J, Kempe S, Altermann W (2004) Microbial origin of Precambrian carbonates: lessons from modern analogues. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp 545–564Google Scholar
  25. Kempe S (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften 77:426–427CrossRefGoogle Scholar
  26. Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108CrossRefGoogle Scholar
  27. Kempe S, Kazmierczak J (1990) Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In: Ittekkot VA, Kempe S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry. Springer, Berlin Heidelberg New York, pp 255–278Google Scholar
  28. Kempe S, Kazmierczak J (1993) Satonda Crater Lake, Indonesia: hydrogeochemistry and biocarbonates. Facies 28:1–32CrossRefGoogle Scholar
  29. Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry organization of living systems and biocalcification processes. In: Doumenge F (ed) Past and present biomineralization processes—considerations about the carbonate cycle. Bull Inst Oceanogr Monaco No Spec 13:61–117Google Scholar
  30. Kempe S, Kazmierczak J (1997) A terrestrial model for an alkaline Martian hydrosphere. Planet Space Sci 45:1493–1499CrossRefGoogle Scholar
  31. Kempe S, Kazmierczak J (2002) Biogenesis and early life on Earth and Europa: favored by an alkaline ocean? Astrobiology 2:123–130PubMedCrossRefGoogle Scholar
  32. Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349:605–608CrossRefGoogle Scholar
  33. Knoll AH, Semikhatov MA (1998) The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios 13:408–422CrossRefGoogle Scholar
  34. Knoll AH, Swett K, Burkhardt E (1989) Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. J Paleontol 63:129–145PubMedGoogle Scholar
  35. Lanier WP (1988) Structure and morphogenesis of microstromatolites from the Transvaal Supergroup, South Africa. J Sediment Petrol 58:89–99Google Scholar
  36. Logan BW (1961) Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia. J Geol 69:517–533CrossRefGoogle Scholar
  37. López-Garcia P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the microbialites of the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274PubMedCrossRefGoogle Scholar
  38. Lowe DR, Tice MT (2004) Geologic evidence for Archean atmospheric and climatic evolution: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32:493–496CrossRefGoogle Scholar
  39. Maslov VP (1961) Vodorosli i karbonatoosazhdenye (Algae and carbonate deposition). Izv Akad Nauk SSSR Ser Geol 12:81–86 (in Russian)Google Scholar
  40. McCord TB, Hansen GB, Matson DL et al (1999) Hydrated salt minerals on Europaʻs surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104(E5):11827–11851CrossRefGoogle Scholar
  41. Merz-Preib M, Riding R (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment Geol 126:103–124CrossRefGoogle Scholar
  42. Myrow PM, Coniglio M (1991) Origin and diagenesis of cryptobiotic Frutexites in the Chapel Island Formation (Vendian to Early Cambrian) of southeast Newfoundland, Canada. Palaios 6:572–585CrossRefGoogle Scholar
  43. Ohmoto H (2004) The Archean atmosphere, hydrosphere and biosphere. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp 361–403Google Scholar
  44. Parkhurst DL, Thorstenson DC, Plummer LN (1980) PHREEQE—a computer program for geochemical calculations. US Geol Surv Water Resour Invest Rep 80–96:1–210Google Scholar
  45. Petrychenko OY, Peryt TM, Chechel EI (2005) Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporates. Chem Geol 219:149–161CrossRefGoogle Scholar
  46. Playford PE, Cockbain AE (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter MR (ed) Stromatolites. Developments in sedimentology 20. Elsevier, Amsterdam, pp 389–411Google Scholar
  47. Rasmussen KA, Macintyre IG, Prufert L (1993) Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize. Geology 21:199–202CrossRefGoogle Scholar
  48. Reid RP, Browne KM (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19:15–18CrossRefGoogle Scholar
  49. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992PubMedCrossRefGoogle Scholar
  50. Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324Google Scholar
  51. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47(Suppl. 1):179–214CrossRefGoogle Scholar
  52. Riding R, Awramik SM, Winsborough BM, Griffin KM, Dill RF (1991) Bahamian giant stromatolites: microbial composition of surface mats. Geol Mag 128:227–234Google Scholar
  53. Rogers G (ed) (1986) The fire has jumped. Eyewitness accounts of the eruption and evacuation of Niuafoʻou. Tonga Institute of Pacific Studies, University of the South Pacific, SuvaGoogle Scholar
  54. Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015Google Scholar
  55. Walter MR (1983) Archean stromatolites: evidence of the Earthʻ earliest benthos. In: Schopf JW (ed) Earthʻs earliest biosphere. Princeton University Press, PrincetonGoogle Scholar
  56. Walter MR, Awramik SA (1979) Frutexites from stromatolites of the Gunflint Iron-Formation of Canada, and its biological affinities. Precambrian Res 9:23–33CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of PaleobiologyPolish Academy of SciencesWarsawPoland
  2. 2.Institut für Angewandte GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations