, Volume 92, Issue 10, pp 464–467 | Cite as

Spectral heterogeneity of honeybee ommatidia

  • Motohiro Wakakuwa
  • Masumi Kurasawa
  • Martin Giurfa
  • Kentaro Arikawa
Short Communication


The honeybee compound eye is equipped with ultraviolet, blue, and green receptors, which form the physiological basis of a trichromatic color vision system. We studied the distribution of the spectral receptors by localizing the three mRNAs encoding the opsins of the ultraviolet-, blue- and green-absorbing visual pigments. The expression patterns of the three opsin mRNAs demonstrated that three distinct types ommatidia exist, refuting the common assumption that the ommatidia composing the bee compound eye contain identical sets of spectral receptors. We found that type I ommatidia contain one ultraviolet and one blue receptor, type II ommatidia contain two ultraviolet receptors, and type III ommatidia have two blue receptors. All the three ommatidial types contain six green receptors. The ommatidia appear to be distributed rather randomly over the retina. The ratio of type I, II, and III ommatidia was about 44:46:10. Type III ommatidia appeared to be slightly more frequent (18%) in the anterior part of the ventral region of the eye. Retinal heterogeneity and ommatidial randomness, first clearly demonstrated in butterflies, seems to be a common design principle of the eyes of insects.


Color Vision Visual Pigment Ventral Region Spectral Heterogeneity Photoreceptive Rhabdomere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. D.G. Stavenga for critical comments. Dr. T Kubo from the University of Tokyo, provided some honeybee samples. The work was supported by the Grants-in Aid for Scientific Research from the JSPS (Japan Society for the Promotion of Science) and the Grant for Promotion of Science from Yokohama City University to which Kentaro Arikawa belongs. Martin Giurfa was supported by the University Paul Sabatier (ATUPS fellowship), Yokohama City University and the CNRS (Center de la recherche scientific).


  1. Arikawa K (2003) Spectral organization of the eye of a butterfly Papilio. J Comp Physiol A 189:791–800CrossRefGoogle Scholar
  2. Arikawa K, Mizuno S, Kinoshita M, Stavenga DG (2003) Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of a butterfly, Papilio xuthus. J Neurosci 23:4527–4532PubMedGoogle Scholar
  3. Arikawa K, Stavenga DG (1997) Random array of colour filters in the eyes of butterflies. J Exp Biol 200:2501–2506PubMedGoogle Scholar
  4. Briscoe AD, Bernard GD, Szeto AS, Nagy LM, White RH (2003) Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification and localization of UV- blue- and green-sensitive rhodopsin encoding mRNA in the retina of Vanessa cardui. J Comp Neurol 458:334–349CrossRefPubMedGoogle Scholar
  5. Chang BS, Ayers D, Smith WC, Pierce NE (1996) Cloning of the gene encoding honeybee long-wavelength rhodopsin: a new class of insect visual pigments. Gene 173:215–219CrossRefPubMedGoogle Scholar
  6. Frisch Kv (1914) Der Farbensinn und Formensinn der Biene. Zool J Physiol 37:1–238Google Scholar
  7. Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: Alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–243CrossRefGoogle Scholar
  8. Giurfa M, Zaccardi G, Vorobyev M (1999) How bees detect coloured targets using different regions of their compound eyes. J Comp Physiol A 185:591–600CrossRefGoogle Scholar
  9. Gribakin FG (1975) Functional morphology of the compound eye of the bee. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 154–176Google Scholar
  10. Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9:419–423CrossRefGoogle Scholar
  11. Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, pp 391–424Google Scholar
  12. Kaiser W, Liske E (1974) Die optomotorische Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. J Comp Physiol 89:391–408CrossRefGoogle Scholar
  13. Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, OxfordGoogle Scholar
  14. Lehrer M (1999) Dorsoventral asymmetry of colour discrimination in bees. J Comp Physiol A 184:195–206CrossRefGoogle Scholar
  15. Menzel R, Backhaus W (1991) Color vision in insects. In: Gouras P (ed) Vision and visual dysfunction the perception of color. Macmillan, London, pp 262–288Google Scholar
  16. Menzel R, Blakers M (1976) Colour receptors in the bee eye - Morphology and spectral sensitivity. J Comp Physiol 108:11–33CrossRefGoogle Scholar
  17. Menzel R, Lieke E (1983) Antagonistic color effects in spatial vision of honeybees. J Comp Physiol A 151:441–448CrossRefGoogle Scholar
  18. Menzel R, Snyder AW (1974) Polarised light detection in the bee, Apis mellifera. J Comp Physiol A 88:247–270CrossRefGoogle Scholar
  19. Qiu X, Vanhoutte KAJ, Stavenga DG, Arikawa K (2002) Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora. Cell Tissue Res 307:371–379CrossRefPubMedGoogle Scholar
  20. Ribi WA (1978) A unique hymenopteran compound eye. The retina fine structure of the digger wasp Sphex cognatus Smith (Hymenoptera, Sphecidae). Zool Jb Anat Bd 100:299–342Google Scholar
  21. Sauman I, Briscoe AD, Zhu H, Shi D, Froy O, Stalleicken J, Yuan Q, Casselman A, Reppert SM (2005) Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron 46:457–467CrossRefPubMedGoogle Scholar
  22. Schwind R, Schlecht P, Langer H (1984) Microspectrophotometric characterization and localization of three visual pigments in the compound eye of Notonecta glauca L. (Heteroptera). J Comp Physiol A 116:183–207Google Scholar
  23. Spaethe J, Briscoe AD (2005) Molecular chracterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. J Exp Biol 208:2347–2361CrossRefPubMedGoogle Scholar
  24. Stavenga DG (2002) Reflections on colourful ommatidia of butterfly eyes. J Exp Biol 205:1077–1085PubMedGoogle Scholar
  25. Townson SM, Chang BSW, Salcedo E, Chadwell LV, Pierce NE, Britt SG (1998) Honeybee blue-and ultraviolet-sensitive opsins: cloning, heterologous expression in Drosophila, and physiological characterization. J Neurosci 18:2412–2422PubMedGoogle Scholar
  26. Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K (2004) A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J Exp Biol 207:2803–2810CrossRefPubMedGoogle Scholar
  27. Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology VII/6B. Springer-Verlag, Berlin Heidelberg New York, pp 281–469Google Scholar
  28. Wehner R, Rossel S (1985) The bee's celestial compass—A case study in behavioral neurobiology. In: Hoelldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Fischer, Stuttgart New York, pp 11–53Google Scholar
  29. White RH, Xu H, Munch T, Bennett RR, Grable EA (2003) The retina of Manduca sexta: rhodopsin-expression, the mosaic of green-, blue-, and UV-sensitive photoreceptors and regional specialization. J Exp Biol 206:3337–3348CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Motohiro Wakakuwa
    • 1
  • Masumi Kurasawa
    • 1
  • Martin Giurfa
    • 2
  • Kentaro Arikawa
    • 1
  1. 1.Graduate School of Integrated ScienceYokohama City UniversityKanazawa-kuJapan
  2. 2.Centre de Recherches sur la Cognition AnimaleCNRS-Université Paul-Sabatier (UMR 5169)Toulouse cedex 4France

Personalised recommendations