, Volume 92, Issue 9, pp 444–450 | Cite as

Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers

  • Jacobus C. Biesmeijer
  • Martin Giurfa
  • Dirk Koedam
  • Simon G. Potts
  • Daniel M. Joel
  • Amots Dafni
Original Article


Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects’ orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.


Nest Entrance Pitcher Plant Dark Centre Spontaneous Preference Radial Stripe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank V. L. Imperatriz-Fonseca (USP, São Paulo) and Arbofilia (El Sur de Turrubares, Costa Rica) for their hospitality and for allowing us to work with their bees and T. Seeley, D. Tarpy, P. Slater, J. Tomkins and three anonymous referees for critical comments on the manuscript. The work was supported by WOTRO, the Netherlands Foundation for the advancement of Science (JCB) and FAPESP (DK)


  1. Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495PubMedCrossRefGoogle Scholar
  2. Backhaus W (1991) Colour opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397CrossRefPubMedGoogle Scholar
  3. Biesmeijer JC, Tóth E (1998) Individual foraging, activity level and longevity in the stingless bee Melipona beecheii in Costa Rica (Hymenoptera, Apidae, Meliponinae). Ins Soc 45:427–443CrossRefGoogle Scholar
  4. Blamey M, Grey-Wilson C (1993) Mediterranean wild flowers. Harper Collins Publishers, JerseyGoogle Scholar
  5. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510CrossRefPubMedGoogle Scholar
  6. Chittka L (1996) Does bee colour vision predate the evolution of flower colour? Naturwissenschaften 83:136–138CrossRefGoogle Scholar
  7. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361-377Google Scholar
  8. Chittka L, Schorn J, de Souza JM, Ventura DF, Camargo JMF (1997) The nest entrance signal of the Amazonian bees Partamona pearsoni—a case where insects design their own flight targets. In: Kipyatkov VE (ed) Proceedings of the International Colloquia on Social Insects, Russian Language Section of the IUSSI, St. Petersburg, vol. 3–4, pp. 107–116Google Scholar
  9. Crepet WL, Friis EM (1987) The evolution of insect pollination in angiosperms. In: Friis EM, Chaloner WG, Crane PR (eds) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 181–201Google Scholar
  10. Dafni A, Giurfa M (1999) The functional ecology of floral guides in relation to insects behaviour and vision. In: Wasser SP (ed) Evolutionary theory and processes: modern perspectives. Kluwer Academic Publishers, Leiden, pp 363–383Google Scholar
  11. Dafni A, Giurfa M, Menzel R (eds) (1997a) Special issue: insect vision and flower recognition. Isr J Plant Sci 45(2–3)Google Scholar
  12. Dafni A, Lehrer M, Kevan PG (1997b) Spatial flower parameters and insect spatial vision. Biol Rev 72:239–282CrossRefGoogle Scholar
  13. Darwin C (1875) Insectivorous plants. Murray, LondonGoogle Scholar
  14. Darwin C (1876) The effects of cross- and self-fertilization in the vegetable kingdom. Murray, LondonGoogle Scholar
  15. Daumer K (1956) Reizmetrische Untersuching des Farbensehens der Bienen. Z vergl Physiol 38:413–478Google Scholar
  16. Daumer K (1958) Blumenfarben, wie sie die Bienen sehen. Z vergl Physiol 41:49–110Google Scholar
  17. Dawkins MS, Guilford T (1997) Conspicuousness and diversity in animal signals. In: Owings et al (eds) Perspectives in ethology, vol 12. Plenum Press, New York, pp 55–75Google Scholar
  18. Ellison AM, Gotelli NJ (2001) Evolutionary ecology of carnivorous plants. TREE 16:623–629Google Scholar
  19. Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139(Suppl) S125–S153CrossRefGoogle Scholar
  20. Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. TREE 13:415–420Google Scholar
  21. Evans HE (1957) Studies on the comparative ethology of digger wasps of the genus Bembix. Comstock Publ Assoc, Ithaca NYGoogle Scholar
  22. Faegri K, van der Pijl L (1979) Principles of pollination ecology. Pergamon Press, OxfordGoogle Scholar
  23. Fitter R, Fitter A, Blamey M (1974) The wild flowers of Britain and Northern Europe. Collins, LondonGoogle Scholar
  24. Giurfa M, Menzel R (1997) Insect visual perception: complex abilities of simple nervous systems. Curr Opin Neurobiol 7:505–513CrossRefPubMedGoogle Scholar
  25. Giurfa M, Lehrer M (2001) Honeybee vision and floral displays: from detection to close-up recognition. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 61–82Google Scholar
  26. Giurfa M, Nuñez J, Chittka L, Menzel R (1995) Colour choice of flower-naïve honeybees. J Comp Physiol A 177:247–259CrossRefGoogle Scholar
  27. Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458–461CrossRefPubMedGoogle Scholar
  28. Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Beh 42:1–14CrossRefGoogle Scholar
  29. Guilford T, Dawkins MS (1993) Receiver psychology and the design of animal signals. TINS 16:430–436PubMedGoogle Scholar
  30. Hertz M (1930) Die Organisation des optischen Feldes bei der Biene. Z vergl Physiol 11:107–145Google Scholar
  31. Horridge A (1994) Bee vision of pattern and 3D. Bioessays 16:877–884CrossRefGoogle Scholar
  32. Jaffé K, Michelangeli F, Gonzalez JM, Miras B, Ruiz MC (1992) Carnivory in pitcher plants of the genus Heliamphora (Sarraceniaceae). New Phytol 122:733–744CrossRefGoogle Scholar
  33. Joel DM (1988) Mimicry and mutualism in carnivorous pitcher plants (Sarraceniaceae, Nepenthaceae, Cephalotaceae, Bromeliaceae). Biol J Linn Soc 35:185–197CrossRefGoogle Scholar
  34. Joel DM, Juniper BE, Dafni A (1985) Ultraviolet paterns in the traps of carnivorous plants. New Phytol 101:585–593CrossRefGoogle Scholar
  35. Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic Press, LondonGoogle Scholar
  36. Kidd MM (1983) Cape Peninsula. Kirstenbosch, ClaremontGoogle Scholar
  37. Lehrer M, Horridge GA, Zhang SW, Gadagkar R (1995) Shape vision in bees: innate preferences for flower-like patterns. Philos Trans R Soc Lond Ser B 347:123–137CrossRefGoogle Scholar
  38. Lunau K (1990) Color saturation triggers innate reactions to flower signals – flower dummy experiments with bumblebees. J Comp Physiol A 166(6): 827–834CrossRefGoogle Scholar
  39. Lunau K (1992) A new interpretation of flower guide colouration: absorption of ultraviolet light enhances colour saturation. Plant Syst Evol 183:51–65CrossRefGoogle Scholar
  40. Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6a. Springer, Berlin Heidelberg New York, pp 504–580Google Scholar
  41. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a case study. Biol Rev 68:81–120CrossRefGoogle Scholar
  42. Moran JA (1996) Pitcher dimorphism, prey composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. J Ecol 84:515–525CrossRefGoogle Scholar
  43. Moran JA, Booth WE, Charles JK (1999) Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: implications for prey capture. Ann Bot 83:521–528CrossRefGoogle Scholar
  44. Proctor M (1996) The natural history of pollination. Timber Press, PortlandGoogle Scholar
  45. Rodriguez I, Gumbert A, Hempel de Ibarra N, Kunze J, Giurfa M (2004) Symmetry is in the eye of the beeholder: innate preference for bilateral symmetry in flower-naive bumblebees. Naturwissenschaften 91:374–377CrossRefPubMedGoogle Scholar
  46. Roubik DW (1979) Nest and colony characteristics of stingless bees from French Guiana (Hymenoptera: Apidae). J Kansas Entomol Soc 52:443–470Google Scholar
  47. Roubik DW (1983) Nest and colony characteristics of stingless bees from Panama (Hymenoptera: Apidae). J Kansas Entomol Soc 56:327–355Google Scholar
  48. Ryan MJ (1998) Sexual selection, receiver biases, and the evolution of sex differences. Science 281:1999–2003CrossRefPubMedGoogle Scholar
  49. Scotter WG, Flygare H (1986) wildflowers of the Canadian rockies. Hurting Publishers, TorontoGoogle Scholar
  50. Slack A (1980) Carnivorous plants. Alphabooks, LondonGoogle Scholar
  51. Sprengel CK (1793) Das entdeckte Geheimniss der Natur in Bau und in der Befruchtung der Blumen. Friedrich Vieweg der Ältere, BerlinGoogle Scholar
  52. Srinivasan MV, Zhang SW, Rolfe B (1993) Is pattern vision in insects mediated by ‘cortical’ processing? Nature 362:539–540CrossRefGoogle Scholar
  53. Tinbergen N (1972) The animal in its world: I. Field studies. Harvard University Press, Cambridge MAGoogle Scholar
  54. von Frisch K (1914) Der Farbensinn und Formensinn der Bienen. Zool Jb (Physiol) 35:1–188Google Scholar
  55. Vorobyev M, Gumbert A, Kunze J, Giurfa M, Menzel R (1997) Flowers through the insect eyes. Isr J Plant Sci 45:93–101Google Scholar
  56. Wehner R (1972) Dorsoventral asymmetry in the visual field of the honey bee, Apis mellifera. J Comp Physiol 77:256–277CrossRefGoogle Scholar
  57. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol. VII-6C. Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  58. Wille A, Michener CD (1973) The nest architecture of stingless bees with special reference to those of Costa Rica. Rev Biol Trop 21(Suppl):1Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jacobus C. Biesmeijer
    • 1
    • 2
  • Martin Giurfa
    • 3
  • Dirk Koedam
    • 4
  • Simon G. Potts
    • 5
  • Daniel M. Joel
    • 6
  • Amots Dafni
    • 7
  1. 1.Centre for Biodiversity and ConservationUniversity of LeedsLeedsUK
  2. 2.Neurobiology and BehaviorCornell UniversityIthacaUSA
  3. 3.Centre de Recherches sur la Cognition AnimaleCNRS–Université Paul Sabatier–Toulouse IIIToulouse Cedex 4France
  4. 4.Laboratorio de AbelhasUniversidade de São PauloSão PauloBrazil
  5. 5.Centre for Agri-Environmental ResearchReading UniversityReadingUK
  6. 6.Division of Weed Research, Agricultural Research OrganizationNewe-Ya’ar Research CentreRamat YishayIsrael
  7. 7.Institute of EvolutionHaifa UniversityHaifaIsrael

Personalised recommendations