Naturwissenschaften

, Volume 91, Issue 8, pp 355–365 | Cite as

Brain mechanisms that control sleep and waking

Review

Abstract

This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep–waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

References

  1. Adey WR, Kado RT, Rhodes JM (1963) Sleep, cortical and subcortical recordings in the chimpanzee. Science 141:932–933PubMedGoogle Scholar
  2. Allison T, Gerber SD, Breedlove SM, Dryden GL (1977) A behavioural and polygraphic study of sleep in the shrews Suncus murinus, Blarina brevicauda and Cryptatis parva. Behav Biol 20:354–366PubMedGoogle Scholar
  3. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274PubMedGoogle Scholar
  4. Batini C, Palestini M, Rossi GF, Zanchetti A (1959a) Effects of complete pontine transections on the sleep-wakefulness rhythm, the midpontine pretrigeminal preparation. Arch Ital Biol 97:1–12Google Scholar
  5. Batini C, Palestini M, Rossi GF, Zanchetti A (1959b) Neural mechanisms underlying the enduring EEG and behavioral activation in the midpontine pretrigeminal cat. Arch Ital Biol 97:13–25Google Scholar
  6. Berger H (1929) Über das Elektronkephalogramm. Arch Psychiat Nervenkrank 87:527–570Google Scholar
  7. Bergmann BM, Kushida CA, Everson CA, Gilliland MA, Overmyer WH, Rechtschaffen A (1989) Sleep deprivation in the rat. II. Methodology. Sleep 12:5–12PubMedGoogle Scholar
  8. Braun AR, Balkin TJ, Wesensten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. Brain 120:1173–1197CrossRefPubMedGoogle Scholar
  9. Brazier MAB (1961) A history of the electrical activity of the brain. Pitman Medical, LondonGoogle Scholar
  10. Buzsaki G (1998) Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 7:17–23CrossRefPubMedGoogle Scholar
  11. Chase MH, Morales FR (2000) Control of motorneurons during sleep. In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medicine. WB Saunders, Philadelphia, pp 155–168Google Scholar
  12. Cicala GA, Albert IB, Ulmer FA (1970) Sleep and other behaviours of the red kangeroo (Megaleia rufa). Animal Behav 18:786–790Google Scholar
  13. Clarke RH, Horsley V (1906) A method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br Med J 2:1799–1800Google Scholar
  14. Dale RC, Church AJ, Surtees RAH, Lees AJ, Adcock JE, Harding B, Neville BGR, Giovannoni G (2004) Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 127:21–33CrossRefPubMedGoogle Scholar
  15. Davis CJ, Harding JW, Wright JW (2003) REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res 973:293–297CrossRefPubMedGoogle Scholar
  16. Dement W (1958) The occurrence of low voltage, fast electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr Clin Neurophysiol 10:291–296CrossRefGoogle Scholar
  17. Economo C von (1923) Encephalitis lethargica. Wien Med Wochenschr 73:777–782Google Scholar
  18. Economo C von (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:248–259Google Scholar
  19. Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin excites the histaminergic tuberomammillary neurons. Soc Neurosci Abstr 27:8.7Google Scholar
  20. Erlanger J, Gasser HS (1924) The compound nature of the action current of nerve as disclosed by the cathode ray oscillograph. Am J Physiol 70:624–666Google Scholar
  21. Everson CA (1993) Sustained sleep deprivation impairs host defense. Am J Physiol Regulatory Integ Comp Physiol 265:R1148–R1154Google Scholar
  22. Everson CA, Toth LA (2000) Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regulatory Integ Comp Physiol 278:R905–R916Google Scholar
  23. Faure J, Vincent D, LeNovenne J, Geissmann P (1963) Sommeil lent et stade paradoxal chez le lapin des deux sexes: role du milieu. C R Hebd Seances Soc Biol 157:799–804Google Scholar
  24. Fishbein W, Gutwein BM (1977) Paradoxical sleep and memory storage processes. Behav Biol 19:425–464PubMedGoogle Scholar
  25. Fishbein W, Gutwein BM (1981) Paradoxical sleep and a theory of long-term memory. In: Fishbein W (ed) Sleep, dreams and memory. Spectrum, New York, pp 147–182Google Scholar
  26. Frank MG, Issa NP, Stryker MP (2001) Sleep enhances plasticity in the developing visual cortex. Neuron 30:275–287CrossRefPubMedGoogle Scholar
  27. French JD, Magoun HW (1952) Effects of chronic lesions in central cephalic brain stem of monkeys. Arch Neurol Psychiat 68:591–604Google Scholar
  28. Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early discrimination skills. Neurosci 3:1335–1339Google Scholar
  29. Gasser HS, Erlanger J (1922) A study of the action currents of nerve with the cathode ray oscillograph. Am J Physiol 62:496–524Google Scholar
  30. Graves LA, Pack AI, Abel T (2001) Sleep and memory: a molecular prospective. Trends Neurosci 24:237–243CrossRefPubMedGoogle Scholar
  31. Graves LA, Heller EA, Pack AI, Abel T (2003) Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem 10:168–176CrossRefPubMedGoogle Scholar
  32. Hartmann E, Bernstein J, Wilson C (1967) Sleep and dreaming in the elephant. Psychophysiology 4:389Google Scholar
  33. Hendricks JC, Morrison AR, Mann GL (1982) Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res 239:85–105CrossRefGoogle Scholar
  34. Hendricks JC, Stefanie MF, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack A (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138CrossRefPubMedGoogle Scholar
  35. Hennevin E, Hars B, Maho C, Bloch V (1995) Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res 69:125–135CrossRefPubMedGoogle Scholar
  36. Hobson JA (1988) The dreaming brain. Basic Books, New YorkGoogle Scholar
  37. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58PubMedGoogle Scholar
  38. Hobson JA, Stickgold R, Pace-Schott EF (1998) The neuropsychology of REM sleep dreaming. NeuroReport 9:R1–R14PubMedGoogle Scholar
  39. Hopkins DA, Darvesh S, Groot MHM de, Rusak B (2001) Orexin immunoreactivity in normal and Alzheimer’s disease brainstem. Soc Neurosci Abstr 27:965.11Google Scholar
  40. Ishimori K (1909) True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi 23:429–457Google Scholar
  41. Jones BE (1993) The organization of cholinergic systems and their functional importance in sleep-waking states. Prog Brain Res 98:61–71PubMedGoogle Scholar
  42. Jones BE (2000) Basic mechanisms of sleep-wake states. In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medicine. WB Saunders, Philadelphia, pp 134–154Google Scholar
  43. Jones BE, Beaudet A (1987) Distribution of acetylcholine and catecholamine neurons in the cat brain stem studied by choline acetyltransferase and tyrosine hydroxylase immunohistochemistry. J Comp Neurol 261:15–32PubMedGoogle Scholar
  44. Jouvet M (1962) Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100:125–206PubMedGoogle Scholar
  45. Jouvet M, Valatx JL (1962) Etude polygraphique du sommeil chez l’agneau. C R Soc Biol Paris 156:1411–1414Google Scholar
  46. Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. C R Soc Biol 153:1024–1028Google Scholar
  47. Kilduff TS, Peyron C (2000) The hypocretin/orexin ligand-receptor system: implication for sleep and sleep disorders. Trends Neurosci 23:359–365CrossRefPubMedGoogle Scholar
  48. Krueger J, Walter J, Levin C (1985) Factor S and related somnogens: an immune theory for slow-wave sleep. In: McGinty D, Drucker-Colín R, Morrison A, Parmeggiani L (eds) Brain mechanisms of sleep, Raven, New York, pp 253–275Google Scholar
  49. Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat. IV. Paradoxical sleep deprivation. Sleep 12:22–30PubMedGoogle Scholar
  50. Lange T, Perras B, Fehm HL, Born J (2003) Sleep enhances the human antibody response to hepatitus A vaccination. Psychosom Med 65:831CrossRefPubMedGoogle Scholar
  51. Latash LP, Galina GS (1975) Polygraphic characteristics of the dog’s sleep. Sleep Res 4:145Google Scholar
  52. Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27:111–122CrossRefPubMedGoogle Scholar
  53. Lindsley DB, Bowden J, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1:475–486Google Scholar
  54. Lindsley DB, Schreiner LH, Knowles WB, Magoun HW (1950) Behavior and EEG changes following chronic brain stem lesions in the cat. Electroencephalogr Clin Neurophysiol 2:483–498CrossRefPubMedGoogle Scholar
  55. Lineberry CG, Siegel J (1971) EEG synchronization, behavioral inhibition, and mesencephalic unit effects produced by stimulation of orbital cortex, basal forebrain and caudate nucleus. Brain Res 34:143–161CrossRefPubMedGoogle Scholar
  56. Macchi G, Bentivoglio M (1986) The thalamic intralaminar nuclei and the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5: Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 355–401Google Scholar
  57. Maquet P (2001) The role of sleep in learning and memory. Science 294:1048–1052CrossRefPubMedGoogle Scholar
  58. Maquet P, Peters J, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye movement sleep and dreaming. Nature 383:163–166CrossRefPubMedGoogle Scholar
  59. Marshall LH, Magoun HW (1990) The Horsley–Clarke stereotaxic instrument: the beginning. Kopf Carrier October:1–5Google Scholar
  60. Marshall LH, Magoun HW (1991) The Horsley–Clarke stereotaxic instrument: the first three instruments. Kopf Carrier May:1–5Google Scholar
  61. McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60PubMedGoogle Scholar
  62. McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23:9687–9695PubMedGoogle Scholar
  63. Monnier M, Koller T, Graber S (1963) Humoral influences of induced sleep and arousal upon electrical brain activity of animals with crossed circulation. Exp Neurol 8:264–277CrossRefGoogle Scholar
  64. Moore RY, Abrahamson EA, Pol A van den (2001) The hypocretin neuron system: an arousal system in the human brain. Arch Ital Biol 139:195–205PubMedGoogle Scholar
  65. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473Google Scholar
  66. Nagasaki H, Kitahama K, Valtax J-L, Jouvet M (1980) Sleep-promoting effect of the sleep-promoting substance (SPS) and delta sleep-inducing peptide (DSIP) in the mouse. Brain Res 192:276–280CrossRefPubMedGoogle Scholar
  67. Nakanishi H, Sun Y, Nakamura RK, Mori K, Ito M, Suda S, Namba H, Storch FI, Dang TP, Mendelson W, Mishkin M, Kennedy C, Gillin JC, Smith CB, Sokoloff L (1997) Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9:271–279PubMedGoogle Scholar
  68. Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little, Brown and Co, Boston, pp 3–30Google Scholar
  69. Nofzinger EA, Mintun MA, Wiseman MB, Kupfer DJ, Moore RY (1997) Forebrain activation of REM sleep: an FDG PET study. Brain Res 770:192–201CrossRefPubMedGoogle Scholar
  70. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605PubMedGoogle Scholar
  71. Pappenheimer JR, Miller TB, Goodrich CA (1967) Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Natl Acad Sci 58:513–518PubMedGoogle Scholar
  72. Peyron C, Tighe DK, Pol AN van den, Lecca L de, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMedGoogle Scholar
  73. Piéron H (1913) Le problème physiologique du sommeil. Masson et Cie, ParisGoogle Scholar
  74. Plihal W, Born J (1997) Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 9:534–457Google Scholar
  75. Plihal W, Born J (1999) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36:571–582CrossRefPubMedGoogle Scholar
  76. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjørkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268CrossRefPubMedGoogle Scholar
  77. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO (eds) (1997) Neuroscience. Sinauer, Sunderland, Mass.Google Scholar
  78. Ramm P, Smith CT (1990) Rates of cerebral protein synthesis are linked to slow-wave sleep in the rat. Physiol Behav 48:749–753CrossRefPubMedGoogle Scholar
  79. Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221:182–184PubMedGoogle Scholar
  80. Rechtschaffen A, Bergmann BM, Everson, CA, Kushida CA, Gilliland MA (1989) Sleep deprivation in the rat. X. Integration and discussion of the findings. Sleep 12:68–87PubMedGoogle Scholar
  81. Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C (2002) Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J Neurosci 22:10914–10923PubMedGoogle Scholar
  82. Roldan E, Weiss T, Fifkova E (1963) Excitability changes during the sleep cycle of the rat. Electroencephalogr Clin Neurophysiol 15:775–785CrossRefPubMedGoogle Scholar
  83. Ruckebusch Y (1962) Evolution post-natale du sommeil chez les ruminants. C R Soc Biol Paris 156:1869–1873PubMedGoogle Scholar
  84. Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol 237:21–46PubMedGoogle Scholar
  85. Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Mountcastle VB, Plum F (eds) Handbook of physiology, vol V: The nervous system. American Physiological Society, Bethesda, Md., pp 169–210Google Scholar
  86. Saper CB, Loewy AD (1980) Efferent projections of the parabrachial nucleus in the rat. Brain Res 197:291–317CrossRefPubMedGoogle Scholar
  87. Saper CB, Sherin JE, Elmquist JK (1997) Role of the ventrolateral preoptic area in sleep induction. In: Hayaishi O, Inoué S (eds) Sleep and arousal disorders: from molecule to behavior. Academic Press, Tokyo, pp 281–294Google Scholar
  88. Sastre JP, Jouvet M (1979) Le comportement onirique du chat. Physiol Behav 22:979–989CrossRefPubMedGoogle Scholar
  89. Schlehuber CJ, Fleming DG, Lange GD, Spooner CE (1974) Paradoxical sleep in chickens. Behav Biol 11:537–546PubMedGoogle Scholar
  90. Schoenberger GA, Monnier M (1977) Characterization of delta EEG sleep-inducing peptide (DSIP). Proc Nat Acad Sci Wash 74:1282–1286Google Scholar
  91. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837CrossRefPubMedGoogle Scholar
  92. Shurley JT, Serafetinides EA, Brookes SE, Elsner R, Kenney DW (1969) Sleep in cetaceans. 1. The pilot whale, Globicephala scammoni. Psychophysiology 6:230Google Scholar
  93. Siegel J (2002) The neural control of sleep and waking. Springer, Berlin Heidelberg New YorkGoogle Scholar
  94. Siegel J, Lineberry CG (1968) Caudate-capsular induced modulation of single unit activity in mesencephalic reticular formation. Exp Neurol 22:444–463CrossRefPubMedGoogle Scholar
  95. Siegel J, Wang RY (1974) Electroencephalographic, behavioral, and single-unit effects produced by stimulation of forebrain inhibitory structures in cats. Exp Neurol 42:28–50CrossRefPubMedGoogle Scholar
  96. Siegel JM (1985) Ponto-medullary interactions in the generation of REM sleep. In: McGinty DJ, Drucker-Colin R, Morrison A, Parmeggiani PL (eds) Brain mechanisms of sleep. Raven, New York, pp 157–174Google Scholar
  97. Siegel JM (2001) The REM sleep-memory consolidation hypothesis. Science 294:1058–1063CrossRefPubMedGoogle Scholar
  98. Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implication for the evolution of sleep. J Neurosci 16:3500–3506PubMedGoogle Scholar
  99. Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Shalita T, Pettigrew JD (1999) Sleep in the platypus. Neuroscience 91:391–400CrossRefPubMedGoogle Scholar
  100. Smith C (1995) Sleep states and memory processes. Behav Brain Res 69:137–145CrossRefPubMedGoogle Scholar
  101. Smith C (1996) Sleep states, memory processes and synaptic plasticity. Brain Behav Res 78:49–56CrossRefGoogle Scholar
  102. Smith C (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5:491–506CrossRefPubMedGoogle Scholar
  103. Spiegel K, Sheridan JF, Van Cauter E (2002) Effect of sleep deprivation on response to immunization. J Am Med Assoc 288:1471–1472CrossRefGoogle Scholar
  104. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New YorkGoogle Scholar
  105. Sterman MB, Clemente CD (1962a) Forebrain inhibitory mechanisms: cortical synchronization induced by basal forebrain stimulation. Exp Neurol 6:91–102CrossRefPubMedGoogle Scholar
  106. Sterman MB, Clemente CD (1962b) Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp Neurol 6:103–117CrossRefPubMedGoogle Scholar
  107. Stickgold R, LaTanya J, Hobson JA (2000a) Visual discrimination learning requires sleep after training. Nat Neurosci 3:1237–1238CrossRefPubMedGoogle Scholar
  108. Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA (2000b) Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci 12:246–254CrossRefPubMedGoogle Scholar
  109. Stickgold R, Hobson JA, Fosse R, Fosse M (2001) Sleep, learning, and dreams: off-line memory processing. Science 294:1052–1057CrossRefPubMedGoogle Scholar
  110. Szymusiak R, McGinty D (1986) Sleep suppression following kainic acid-induced lesions of the basal forebrain. Exp Neurol 94:598–614CrossRefPubMedGoogle Scholar
  111. Thakkar MM, Strecker RE, Delgiacco RA, McCarley RW (1999) Adenosinergic A1 inhibition of basal forebrain wake-active neurons: a combined unit recording and microdialysis study in freely behaving cats. Sleep Res Online 2 (Suppl 1):91–92Google Scholar
  112. Thakkar MM, Winston S, McCarley RW (2002) Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Res 944:190–194CrossRefPubMedGoogle Scholar
  113. Van Cauter E, Spiegel K (1999) Circadian and sleep control of hormonal secretions. In: Zee PC, Turek FW (eds) Regulation of sleep and circadian rhythms. Marcel Dekker, New York, pp 397–425Google Scholar
  114. Xi M-C, Morales FR, Chase MH (1999) A GABAergic reticular system is involved in the control of wakefulness and sleep. Sleep Res Online 2:43–48PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.University of DelawareNewarkUSA
  2. 2.Warsaw School of Social PsychologyWarsawPoland

Personalised recommendations