Advertisement

Naturwissenschaften

, Volume 91, Issue 7, pp 350–353 | Cite as

Honeybee combs: construction through a liquid equilibrium process?

  • C. W. W. PirkEmail author
  • H. R. Hepburn
  • S. E. Radloff
  • J. Tautz
Short Communication

Abstract

Geometrical investigations of honeycombs and speculations on how honeybees measure and construct the hexagons and rhombi of their cells are centuries old. Here we show that honeybees neither have to measure nor construct the highly regular structures of a honeycomb, and that the observed pattern of combs can be parsimoniously explained by wax flowing in liquid equilibrium. The structure of the combs of honeybees results from wax as a thermoplastic building medium, which softens and hardens as a result of increasing and decreasing temperatures. It flows among an array of transient, close-packed cylinders which are actually the self-heated honeybees themselves. The three apparent rhomboids forming the base of each cell do not exist but arise as optical artefacts from looking through semi-transparent combs.

Keywords

Drone Polyester Resin Building Activity Beeswax Regular Hexagon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank H. Kragh (Denmark), T. Seeley (USA), E. Rademacher (Germany) and S. Ripley (South Africa) for constructive suggestions, Strahl & Pitsch (USA) for the gift of waxes and C. Hepburn (South Africa) for technical assistance. Financial support came from the Deutsche Forschungsgemeinschaft (GK 200 to C.W.W.P., SFB 554 to J.T.). The experiments performed comply with the current laws of Germany and South Africa.

Supplementary material

supp.pdf (718 kb)
(PDF 719 KB)

References

  1. Bartholin E (1660) De Figure Nivis. In: Georgi Gordiani (1674) De Naturae Mirabilibus, Quaestiones Academicae. HafniaeGoogle Scholar
  2. Bénard H (1900) Les tourbillons cellulaires dans une nappe liquide. Rev Gen Sci 12:1261–1271, 1309–1328Google Scholar
  3. Boltzmann L (1905) Populäre Schriften. Barth, Leipzig, GermanyGoogle Scholar
  4. Bonanni APP (1681) Ricreatione dell’occhio e della mente, nell’ Osservatione delle Chiocciole. RomeGoogle Scholar
  5. Bujok B, Kleinhenz M, Fuchs S, Tautz J (2002) Hot spots in the bee hive. Naturwissenschaften 89:299–301CrossRefGoogle Scholar
  6. Darchen R (1959) Un des rôles des chaînes d’abeilles: la torsion des rayons pour les rendre parallèles entre eux. Ann Abeilles (Paris) 2:193–209Google Scholar
  7. Fröhlich B (2000) Wachse der Honigbiene Apis mellifera carnica Pollm.: chemische und physikalische Unterschiede und deren Bedeutung für die Biene. PhD thesis, Beegroup, Universität Würzburg, GermanyGoogle Scholar
  8. Hales TC (2000) Cannonballs and honeycombs. Not AMS 47:440–449Google Scholar
  9. Hepburn HR (1986) Honeybees and wax: an experimental natural history. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Hepburn HR, Kurstjens SP (1988) The combs of honeybees as composite materials. Apidologie 19:25–36Google Scholar
  11. Hepburn HR, Muller WJ (1988) Wax secretion in honeybees: thermal integrity of the festoon. Naturwissenschaften 75:628–629Google Scholar
  12. Hunter J (1792) Observations on bees. Philos Trans R Soc 82:128–196Google Scholar
  13. Kepler J (1611) De Nive Sexangula (see Aiton EJ, Duncan AM, Field JV (1997) The harmony of the world. American Philosophical Society, Philadelphia)Google Scholar
  14. Lau D (1959) Beobachtungen und Experimente über die Entstehung der Bienenwabe (Apis mellifica L.). Zool Beitrag 4:233–306Google Scholar
  15. Leduc S (1911) The mechanism of life. Rebman, LondonGoogle Scholar
  16. Martin H, Lindauer M (1966) Sinnesphysiologische Leistungen beim Wabenbau der Honigbiene. Z Vergl Physiol 53:372–404Google Scholar
  17. Müllenhof K (1883) Über die Entstehung der Bienenzellen. Pfluegers Arch 32:589–618Google Scholar
  18. Remnant RA (1637) Discourse or historie of bees. Young, LondonGoogle Scholar
  19. Thomson J (1881–1882) On a changing tessellated structure in certain liquids. Proc Glasgow Philos SocGoogle Scholar
  20. Thompson DW (1917) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  21. Tóth F (1964) What the bees know and what they do not know. Bull Am Math Soc 70:468–481Google Scholar
  22. Vogt H (1911) Geometrie und Ökonomie der Bienenzelle. Trewend Granier, Breslau, GermanyGoogle Scholar
  23. Waterhouse GR (1864) On the formation of the cells of bees and wasps. Trans Entomol Soc. Lond Ser III 2:115–129Google Scholar
  24. Weaire D, Phelan R (1994) Optimal design of honeycombs. Nature 367:123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C. W. W. Pirk
    • 1
    Email author
  • H. R. Hepburn
    • 2
  • S. E. Radloff
    • 3
  • J. Tautz
    • 1
  1. 1.Beegroup, BiozentrumUniversität WürzburgWürzburgGermany
  2. 2.Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
  3. 3.Department of StatisticsRhodes UniversityGrahamstownSouth Africa

Personalised recommendations