Skip to main content
Log in

Tetrahedral homonuclear organoelement clusters and subhalides of aluminium, gallium and indium

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

This review is focused on the synthesis and the reactivity of tetrahedral organoelement clusters of the heavier elements of third main-group aluminium, gallium, and indium, which have been known for about a decade. They possess the elements in an unusually low oxidation state of +1 and have direct element–element interactions between their four constituents. Each cluster atom is further attached to one terminal and in most cases a bulky organic substituent, which prevents disproportionation by steric shielding. The synthesis of these compounds succeeds by different methods such as the reduction of suitable organoelement(III) halides with alkali metals and magnesium or the treatment of element(I) halides with lithium organyls. They are deeply coloured, and their bonding situation may best be described by delocalized molecular orbitals. They show a singular chemical reactivity, which results in the formation of many secondary products possessing unprecedented structures and properties. The synthesis of organoelement subhalides still containing the elements in low oxidation states is discussed in more detail in the second part of this review. These compounds are easily accessible by the careful oxidation of the clusters with halogen donors such as hexachloroethane or with AlX3/X2 mixtures. They produce dimers via halogen bridges, but in certain cases monomers were observed even for the solid state. They are very effective starting compounds for secondary reactions and the generation of new products containing the elements in unusual oxidation states by salt-elimination reactions, for instance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlrichs R, Ehrig M, Horn H (1991) Bonding in the aluminum cage compounds [Al(η 5–C5R5)]4 and Al4X4, X=H, F, Cl. Chem Phys Lett 183:227–233

    Article  CAS  Google Scholar 

  • Beachley OT Jr, Blom R, Churchill MR, Faegri K Jr, Fettinger JC, Pazik JC, Victoriano L (1989) (Pentamethylcyclopentadienyl)indium(I) and -indium(III) compounds: syntheses, reactivities, and x-ray diffraction and electron diffraction studies of In(C5Me5). Organometallics 8:346–356

    CAS  Google Scholar 

  • Beachley OT Jr, Pazik JC, Noble MJ (1994) Low oxidation state gallium compounds: synthesis and characterization of [Ga(CH2CMe3)] n . Organometallics 13:2885–2889

    CAS  Google Scholar 

  • Beachley OT Jr, Noble MJ, Allendoerfer RD (1999) Synthesis of an organogallium(I) compound [Ga(CH2CMe2Ph)] n with EPR spectral evidence for gallium clusters. J Organomet Chem 582:32–39

    Article  CAS  Google Scholar 

  • Bosio L (1978) Crystal structures of GaII and GaIII. J Chem. Phys 68:1221–1223

    Article  CAS  Google Scholar 

  • Bosio L, Defrain A, Curien H, Rimsky A (1969) Structure cristalline du gallium β. Acta Crystallogr Sect B 25:995

    Article  CAS  Google Scholar 

  • Bosio L, Curien H, Dupont M, Rimsky A (1972) Structure cristalline de Ga γ. Acta Crystallogr Sect B 28:1974–1975

    Article  CAS  Google Scholar 

  • Bosio L, Curien H, Dupont M, Rimsky A (1973) Structure cristalline de Ga δ. Acta Crystallogr Sect B 29:367–368

    Article  CAS  Google Scholar 

  • Casanova J (ed) (1998) The borane, carborane, carbocation continuum. Wiley, New York

  • Cotton FA (1966) Transition-metal compounds containing clusters of metal atoms. Q Rev Chem Soc 20:389–401

    Article  CAS  Google Scholar 

  • Cowley AH, Decken A, Olazábal CA (1996) Hybrid inorganic-organometallic compounds with gallium–gallium bond. J Organomet Chem 524:271–273

    Article  CAS  Google Scholar 

  • Dashti-Mommertz A, Neumüller B, Melle S, Haase D, Uhl W (1999) [Tl3Cp2][CpMo(CO)3], a salt with the new cation [Tl3Cp2]+: structural reinvestigation of MCp (M=In, Tl). Z Anorg Allg Chem 625:1828–1832

    Article  CAS  Google Scholar 

  • Deacon GB, Delbridge EE, Forsyth CM, Skelton BW, White AH (2000) Novel pyrazolate coordination modes and unusual Tl···Tl or Tl-π-(phenyl) interactions in the crystal structures of [{Tl3(Ph2pz)3} n ], [{Tl4(Ph2pz)4} n ], [{Tl4(Ph2pz)3(OH)}2] and [{Tl4(MePhpz)3(OH)} n ] (Ph2pz=3,5-diphenylpyrazolate; MePhpz=3-methyl-5-phenyl-pyrazolate). J Chem Soc Dalton Trans 2000:745–751

    Article  Google Scholar 

  • Dohmeier C, Robl C, Tacke M, Schnöckel H (1991) The (pentamethylcyclopentadienyl)aluminum(I) tetramer [{Al(η 5–C5Me5)}4]. Angew Chem 103:594–595; Angew Chem Int Ed Engl 30:564–565

    Google Scholar 

  • Dohmeier C, Mocker M, Schnöckel H, Lötz A, Schneider U, Ahlrichs R (1993) tert-Butylaluminum cluster [AltBu]6: ESR spectroscopic detection and ab-initio calculations. Angew Chem 105:1491–1493; Angew Chem Int Ed Engl 32:1428–1430

    Google Scholar 

  • Dohmeier C, Krautscheid H, Schnöckel H (1994a) [(CpNi)2(Cp*Al)2]: Cp*Al as a bridging two-electron ligand. Angew Chem 106:2570–2571; Angew Chem Int Ed Engl 33:2482–2483

    Google Scholar 

  • Dohmeier C, Schnöckel H, Robl C, Schneider U, Ahlrichs R (1994b) [P4(Cp*Al)6]: a compound with unusual P4Al6 cage structure. Angew Chem 106:225–227; Angew Chem Int Ed Engl 33:199–200

    Google Scholar 

  • Dohmeier C, Loos D, Schnöckel H (1996) Aluminium(I) and gallium(I) compounds: syntheses, structures, and reactions. Angew Chem 108:141–161; Angew Chem Int Ed Engl 35:129–149

    Google Scholar 

  • Donohue J (1974) The structures of the elements. Wiley, New York

  • Doriat CU, Friesen M, Baum E, Ecker A, Schnöckel H (1997) Synthesis, structure and oxidation of the donor-stabilized gallium(I) iodide Ga8I8·6PEt3. Angew Chem 109:2057–2059; Angew Chem Int Ed Engl 36:1969–1971

    Google Scholar 

  • Ecker A, Schnöckel H (1996) Donor stabilized aluminum(I) iodide. Z Anorg Allg Chem 622:149–152

    CAS  Google Scholar 

  • Ecker A, Schnöckel H (1998) A structural comparison of donor-stabilized aluminum iodides. Z Anorg Allg Chem 624:813–816

    Article  CAS  Google Scholar 

  • Ecker A, Weckert E, Schnöckel H (1997) Synthesis and structural characterization of an Al77 cluster. Nature 387:379–381

    Article  CAS  Google Scholar 

  • Eichler BE, Hardman NJ, Power PP (2000) In8(C6H3-2,6-Mes2)4 (Mes=C6H2-2,4,6-Me3): a metal-rich main-group cluster with a distorted cubane structure. Angew Chem 112:391–393; Angew Chem Int Ed 39:383–385

    Google Scholar 

  • Fischer RA, Weiss J (1999) Coordination chemistry of aluminum, gallium, and indium at transition metals. Angew Chem 111:3002–3022; Angew Chem Int Ed 38:2830–2850

    Google Scholar 

  • Frasson E, Menegus F, Panattoni C (1963) Chain structure of the cyclopentadienyls of univalent In and Tl. Nature 199:1087–1089

    CAS  Google Scholar 

  • Gauss J, Schneider U, Ahlrichs R, Dohmeier C, Schnöckel H (1993) 27Al NMR spectroscopic investigation of aluminum(I) compounds: ab initio calculations and experiment. J Am Chem Soc 115:2402–2408

    CAS  Google Scholar 

  • Green MLH, Mountford P, Smout GJ, Speel SR (1990) New synthetic pathways into the organometallic chemistry of gallium. Polyhedron 9:2763–2765

    Article  CAS  Google Scholar 

  • Haaland A, Martinsen K-G, Volden HV, Loos, D. Schnöckel H (1994) The molecular structure of pentamethylcyclopentadienylgallium, Ga(η 5–C5Me5) by gas-phase electron diffraction: the first monomeric organogallium(I) compound. Acta Chem Scand 48:172–174

    CAS  Google Scholar 

  • Haaland A, Martinsen K-G, Shlykov SA, Volden HV, Dohmeier C, Schnöckel H (1995) Molecular structure of monomeric (pentamethylcyclopentadienyl)aluminum(I) by gas-phase electron diffraction. Organometallics 14:3116–3119

    CAS  Google Scholar 

  • Haaland A, Martinsen K-G, Volden HV, Kaim W, Waldhör E, Uhl W, Schütz U (1996) Gas-phase structure of the monomeric alkylgallium(I) compound Ga[C(SiMe3)3] and the electrochemical behavior of Ga4[C(SiMe3)3]4 and In4[C(SiMe3)3]4 with EPR evidence for a Ga4R4 radical anion. Organometallics 15:1146–1150

    Article  CAS  Google Scholar 

  • Hänisch CKF von, Üffing C, Junker MA, Ecker A, Kneisel BO, Schnöckel H (1996) As2(AlCp*)3: a compound with a polyhedral As2Al3 framework. Angew Chem 108:3003–3005; Angew Chem Int Ed Engl 35:2875–2877

    Google Scholar 

  • Hardman NJ, Wright RJ, Phillips AD, Power PP (2002) Synthesis and characterization of the neutral “digallene” Ar′GaGaAr′ and its reduction to Na2Ar′GaGaAr′ (Ar′=2,6-Dipp2C6H3, Dipp=2,6-iPr2C6H3). Angew Chem 114:2966–2968; Angew Chem Int Ed 41:2842–2844

    Google Scholar 

  • Hardman NJ, Wright RJ, Phillips AD, Power PP (2003) Structures, bonding, and reaction chemistry of the neutral organogallium(I) compounds (GaAr) n (n=1 or 2) (Ar=terphenyl or related ligand): an experimental investigation of Ga−Ga multiple bonding. J Am Chem Soc 125:2667–2679

    Article  CAS  PubMed  Google Scholar 

  • Hiller W, Klinkhammer K-W, Uhl W, Wagner J (1991) K2[Al12iBu12] with Al12 icosahedron. Angew Chem 103:182–183; Angew Chem Int Ed Engl 30:179–180

    Google Scholar 

  • Jutzi P, Neumann B, Schebaum LO, Stammler A, Stammler H-G (1999) Steric demand of the Cp*Ga ligand: synthesis and structure of Ni(Cp*Ga)4 and of cis-M(Cp*Ga)2(CO)4 (M=Cr, Mo). Organometallics 18:4462–4464

    Article  CAS  Google Scholar 

  • Kehrwald M, Köstler W, Rodig A, Linti G, Blank T, Wiberg N (2001) Ga10[Si(SiMe3)3]6, [Ga10(SitBu3)6], and [Ga13(SitBu3)6]: syntheses and structural characterization of novel gallium cluster compounds. Organometallics 20:860–867

    Article  CAS  Google Scholar 

  • Kenichi T, Kazuaki K, Masao A (1998) High-pressure bct-fcc phase transition in Ga. Phys Rev. B 58:2482–2486

    Google Scholar 

  • Klemp C, Stösser G, Krossing I, Schnöckel H (2000a) Al5Br7·5THF: the first saltlike aluminum subhalide. Angew Chem 112:3834–3837; Angew Chem Int Ed 39:3691–3694

    Google Scholar 

  • Klemp C, Üffing C, Baum E, Schnöckel H (2000b) Synthesis and structure of two mixed substituted dialanes Al2X2{Si(SiMe3)3}2·2THF (X=Cl, Br). Z Anorg Allg Chem 626:1787–1791

    Article  CAS  Google Scholar 

  • Köstler W, Linti G (1997) Synthesis and structure of a tetragallane [R4GaI3] and a polyhedral nonagallane [R6Ga9]. Angew Chem 109:2758–2760; Angew Chem Int Ed Engl 36:2644–2645

    Google Scholar 

  • Kovar RA, Derr H, Brandau D, Callaway JO (1975) Preparation of organogallium compounds from organolithium reagents and gallium chloride: infrared, magnetic resonance, and mass spectral studies of alkylgallium compounds. Inorg Chem 14:2809–2814

    CAS  Google Scholar 

  • Laves F (1932) Crystal structure of gallium. Naturwissenschaften 20:472

    CAS  Google Scholar 

  • Linti G (1996) Gallium(I) tris(trimethylsilyl)silyl: an experimental and theoretical study. J Organomet Chem 520:107–113

    Article  CAS  Google Scholar 

  • Linti G, Köstler W (1996) Synthesis and structure of a digallane with tris(trimethylsilyl)silyl and chloro substituents. Angew Chem 108:593–595; Angew Chem Int Ed Engl 35:550–552

    Google Scholar 

  • Linti G, Köstler W (1998) The tris(trimethylsilyl)silylgallium group as a building block in gallium–iron clusters. Chem Eur J 4:942–949

    Article  CAS  Google Scholar 

  • Linti G, Rodig A (2000) Facile synthesis and crystal structure of a Ga22R8 cluster. Chem Commun 2:127–128

    Article  Google Scholar 

  • Linti G, Schnöckel H (2000) Low valent aluminum and gallium compounds: structural variety and coordination modes to transition metal fragments. Coord Chem Rev 206–207:285–319

    Google Scholar 

  • Linti G, Li G, Pritzkow H (2001) On the chemistry of gallium. Part 19. Synthesis and crystal structure analysis of novel complexes containing Ga−FeCp(CO)2-fragments. J Organomet Chem 626:82–91

    Article  CAS  Google Scholar 

  • Linti G, Schnöckel H, Uhl W, Wiberg N (2004) Clusters of the heavier group 13 elements. In: Driess M, Nöth H (eds) Molecular clusters of the main group elements: extending borders from molecules to materials. Wiley-VCH, Weinheim

  • Lomelí V, McBurnett BG, Cowley AH (1998) An indium(II)–indium(II) compound with intramolecular donor–acceptor bonds. J Organomet Chem 562:123–125

    Article  Google Scholar 

  • Loos D, Schnöckel H, Fenske D (1993) [{(Et2O)2ClGa}Ga{GaCl2(Et2O)}3]: a molecule with a tetrahedral Ga5 unit. Angew Chem 105:1124–1125; Angew Chem Int Ed Engl 32:1059–1060

    Google Scholar 

  • Loos D, Baum E, Ecker A, Schnöckel H, Downs AJ (1997) Hexameric aggregates in crystalline (pentamethylcyclopentadienyl)gallium(I) at 200 K. Angew Chem 109:894–896; Angew Chem Int Ed Engl 36:860–862

    Google Scholar 

  • Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice Hall, Englewood Cliffs, N.J.

  • Mocker M, Robl C, Schnöckel H (1994) Donor stabilized aluminum(I) bromide. Angew Chem 106:1860–1861; Angew Chem Int Ed Engl 33:1754–1755

    Google Scholar 

  • Purath A, Schnöckel H (1999) Tetrakis[tris(trimethylsilyl)silylaluminium(I)] Al4[Si(SiMe3)3]4: a silicon-rich compound with a central tetrahedral Al4 nucleus. J Organomet Chem 579:373–375

    Article  CAS  Google Scholar 

  • Purath A, Dohmeier C, Ecker A, Schnöckel H, Amelunxen K, Passler T, Wiberg N (1998) Synthesis and crystal structure of the tetraaluminatetrahedrane Al4[Si(t-Bu)3]4, the second Al4R4 compound. Organometallics 17:1894–1896

    Article  CAS  Google Scholar 

  • Purath A, Dohmeier C, Ecker A, Köppe R, Krautscheid H, Schnöckel H, Ahlrichs R, Stoermer C, Friedrich J, Jutzi P (2000) Synthesis and structure of a neutral SiAl14 cluster. J Am Chem Soc 122:6955–6959

    Article  CAS  Google Scholar 

  • Rheingold AL, Liable-Sands LM, Trofimenko S (1997) Formation of a tetrahedral Tl4 cluster directed by a novel homoscorpionate ligand. Chem Commun 17:1691–1692

    Article  Google Scholar 

  • Schiefer M, Reddy ND, Roesky HW, Vidovic D (2003) Synthesis and structural characterization of an exclusively N-based tetrameric aluminum(I) compound. Organometallics 22:3637–3638

    Article  CAS  Google Scholar 

  • Schluter RD, Cowley AH, Atwood DA, Jones RA, Atwood JL (1993) An alkyl-substituted indium(I) tetramer. J Coord Chem 30:25–28

    CAS  Google Scholar 

  • Schneider U, Ahlrichs R, Horn H, Schäfer A (1992) Ab-initio studies on the structure and stability of [R3SiAl]4, R=H, Me, tBu. Angew Chem 104:327–329; Angew Chem Int Ed Engl 31:353–355

  • Schnepf A, Schnöckel H (2001) Synthesis and structure of a ga84r20 4− cluster: a link between metalloid clusters and fullerenes? Angew Chem 113:734–737; Angew Chem Int Ed 40:711–715

    Google Scholar 

  • Schnepf A, Schnöckel H (2002) Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew Chem 114:3682–3703; Angew Chem Int Ed 41:3532–3554

    Google Scholar 

  • Schnepf A, Stösser G, Schnöckel H (2000) The first molecular square antiprismatic Ga8 cluster exhibiting a closo structure. Z Anorg Allg Chem 626:1676–1680

    Article  CAS  Google Scholar 

  • Schnepf A, Köppe R, Schnöckel H (2001) A Ga8R6 cluster as an ideal model for a metal–metal bond? Angew Chem 113:1287–1290; Angew Chem Int Ed 40:1241–1243

    Google Scholar 

  • Schnitter C, Roesky HW, Röpken C, Herbst-Irmer R, Schmidt H-G, Noltemeyer M (1998) The behaviour of [RAlX2·THF] compounds under reductive conditions: tetrakis[tris(trimethylsilyl)methylaluminum(I): a neutral aluminum(I) compound with σ-bound alkyl groups and a tetrahedral structure. Angew Chem 110:2059–2062; Angew Chem Int Ed 37:1952–1955

    Google Scholar 

  • Schnöckel H, Köhnlein H (2002) Synthesis and structure of metalloid aluminum clusters: intermediates on the way to the elements. Polyhedron 21:489–501

    Article  Google Scholar 

  • Schnöckel H, Schnepf A (2001) From AlX/GaX monohalide molecules to metalloid aluminum and gallium clusters. Adv Organomet Chem 47:235–281

    Google Scholar 

  • Schulte O, Holzapfel WB (1997) Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa. Phys Rev B 55:8122–8128

    Article  CAS  Google Scholar 

  • Schulz S, Roesky HW, Koch HJ, Sheldrick GM, Stalke D, Kuhn A (1993) A simple synthesis of [(Cp*Al)4] and its conversion to the heterocubanes [(Cp*AlSe)4] and [(Cp*AlTe)4] (Cp*=η 5–C5(CH3)5). Angew Chem 105:1828–1830; Angew Chem Int Ed Engl 32:1729–1731

    Google Scholar 

  • Schulz S, Schoop T, Roesky HW, Häming L, Steiner A, Herbst-Irmer R (1995) Synthesis and structure of organometallic compounds with (Al2Si)2 and Al3Sb2 frameworks. Angew Chem 107:1015–1016; Angew Chem Int Ed Engl 34:919–920

    Google Scholar 

  • Sitzmann H, Lappert MF, Dohmeier C, Üffing C, Schnöckel H (1998) Cyclopentadienylderivate von Aluminium(I). J Organomet Chem 561:203–208

    Article  CAS  Google Scholar 

  • Üffing C, Baum E, Köppe R, Schnöckel H (1998) Cp3*Al5I6: an intermediate in reactions leading to elemental aluminum and AlIII-species? Angew Chem 110:2488–2491; Angew Chem Int Ed 37:2397–2400

    Google Scholar 

  • Uhl W (1988) Tetrakis[bis(trimethylsilyl)methyl]dialane(4): a compound with an aluminium–aluminium bond. Z Naturforsch 43b:1113–1118

    Google Scholar 

  • Uhl W (2004) Organoelement compounds possessing Al–Al, Ga–Ga, In–In and Tl–Tl single bonds. Adv Organomet Chem 51:53–107

    Google Scholar 

  • Uhl W, Benter M (1999) The insertion of alkylgallium(I) groups [Ga–C(SiMe3)3] into P–P bonds of P4: formation of a P4(GaR)3 cage. Chem Commun 771–772

  • Uhl W, El-Hamdan A (2004) Reactivity of organoelement subhalides of gallium and indium: Ga–Ga and In–In bonds bridged by carboxylato ligands. Eur J Inorg Chem 2004:969–972

    Article  Google Scholar 

  • Uhl W, Jantschak A (1998) A facile high-yield synthesis of the tetrahedral gallium(I) compounds Ga4[C(SiMe2R)3]4: crystal structure of Ga4[C(SiMe2Et)3]4. J Organomet Chem 555:263–269

    Article  CAS  Google Scholar 

  • Uhl W, Melle S (2000) Pt[In–C(SiMe3)3]4: a Pt(CO)4 analogous compound with a platinum atom tetrahedrally coordinated by four InR ligands. Z Anorg Allg Chem 626:2043–2046

    Article  CAS  Google Scholar 

  • Uhl W, Melle S (2001) Alkylindium subhalides derived from the tetrahedral indium(I) cluster compound In4[C(SiMe3)3]4. Chem Eur J 7:4216–4221

    Article  CAS  Google Scholar 

  • Uhl W, Pohlmann M (1998) An E4O4 heterocubane structure with a trivalent element of group 13 realized in In4O4[C(SiMe3)3]4. Chem Commun 4:451–452

    Article  Google Scholar 

  • Uhl W, Hiller W, Layh M, Schwarz W (1992) Ga4[C(SiMe3)3]4 with a tetrahedral gallium framework. Angew Chem 104:1378–1380; Angew Chem Int Ed Engl 31:1364–1366

    Google Scholar 

  • Uhl W, Graupner R, Layh M, Schütz U (1995a) In4{C(SiMe3)3}4 with In4 tetrahedron and In4Se4{C(SiMe3)3}4 with In4Se4 heterocubane structure. J Organomet Chem 493:C1–C5

    Article  CAS  Google Scholar 

  • Uhl W, Keimling SU, Hiller W, Neumayer M (1995b) Octacarbonylbis[μ-tris(trimethylsilyl)methylindanyl]dimanganese with two monoalkyl indium groups bridging the Mn–Mn bond. Chem Ber 128:1137–1139

    CAS  Google Scholar 

  • Uhl W, Graupner R, Pohlmann M, Pohl S, Saak W (1996a) Reactions of the alkyl In(I) compound In4[C(SiMe3)3]4 with sulfur and tellurium: syntheses of In4S4[C(SiMe3)3]4 and In4Te4[C(SiMe3)3]4 with indium chalcogen heterocubane structures. Chem Ber 129:143–146

    CAS  Google Scholar 

  • Uhl W, Hahn I, Reuter H (1996b) Reactions of tetrakis[bis(trimethylsilyl)methyl]digallane(4) with carboxylic acids: substituent exchange and bridging of the Ga–Ga bond by two carboxylato groups. Chem Ber 129:1425–1428

    CAS  Google Scholar 

  • Uhl W, Keimling SU, Hiller W, Neumayer M (1996c) The reaction of the alkyl indium(I) compound In4[C(SiMe3)3]4 with octacarbonyldicobalt: bridging of the Co–Co bond by one or two In–C(SiMe3)3 groups. Chem Ber 129:397–400

    CAS  Google Scholar 

  • Uhl W, Graupner R, Hiller W, Neumayer M (1997a) In4S[C(SiMe3)3]4: an organoindium compound with an In4S core electronically isovalent to pentahydro-closo-pentaborate(2–). Angew Chem 109:62–64; Angew Chem Int Ed Engl 36:62–64

  • Uhl W, Graupner R, Pohl S, Saak W, Hiller W, Neumayer M (1997b) The reactions of R2Al–AlR2 and R2In–InR2 with benzoic acid: synthesis and crystal structure of R2Al(µ-H)(µ-O2C–C6H5)AlR2 and RIn(µ-O2C–C6H5)4InR [R=CH(SiMe3)2]. Z Anorg Allg Chem 623:883–891

    CAS  Google Scholar 

  • Uhl W, Keimling SU, Klinkhammer KW, Schwarz W (1997c) TlI[C(SiMe3)3]: an alkylthallium(I) compound with a distorted tetrahedron of Tl atoms in the solid state. Angew Chem 109:64–66; Angew Chem Int Ed Engl 36:64–65

  • Uhl W, Benter M, Saak W, Jones PG (1998a) The formation of gallium chalcogen heterocubanes by the reaction of the alkylgallium(I) compound Ga4[C(SiMe3)3]4 with sulfur, selenium, and tellurium. Z Anorg Allg Chem 624:1622–1628

    Article  CAS  Google Scholar 

  • Uhl W, Graupner R, Hahn I, Spies T, Frank W (1998b) The reactions of R2Ga–GaR2 and R2In–InR2 [R=CH(SiMe3)2] with protic reagents: substituent exchange versus cleavage of the element–element bond. Eur J Inorg Chem 1998:355–360

    Article  Google Scholar 

  • Uhl W, Jantschak A, Saak W, Kaupp M, Wartchow R (1998c) A systematic experimental and quantum chemical investigation into the structure, the stability, and the spectroscopic properties of alkylindium(I) compounds: tetrameric In4[C(SiMeRR′)3]4 versus monomeric In–C(SiMeRR′)3 derivatives. Organometallics 17:5009–5017

    Article  CAS  Google Scholar 

  • Uhl W, Pohlmann M, Wartchow R (1998d) [Ni{InC(SiMe3)3}4]: an organometallic nickel–indium compound analogous to [Ni(CO)4]. Angew Chem 110:1007–1009; Angew Chem Int Ed 37:961–963

    Google Scholar 

  • Uhl W, Benter M, Melle S, Saak W, Frenking G, Uddin J (1999a) Synthesis and structure of [Ni{Ga–C(SiMe3)3}4] and quantum chemical verification of strong π back-bonding in the model compounds [Ni(EMe)4] (E=B, Al, Ga, In, Tl). Organometallics 18:3778–3780

    Article  CAS  Google Scholar 

  • Uhl W, Spies T, Koch R (1999b) Di(µ-acetato)dialkyldigallium as starting compound for the facile syntheses of digallium derivatives containing bridged or terminally co-ordinated Ga–Ga single bonds. J Chem Soc Dalton Trans 1999:2385–2391

    Article  Google Scholar 

  • Uhl W, Benter M, Prött M (2000) Replacement of CO ligands by the isolobal gallium(I) compound GaR [R=C(SiMe3)3], formation of the transition metal gallium compounds Mn2(CO)8(µ-GaR)2 and Fe3(CO)9(µ–CO)(µ-GaR)2. J Chem Soc Dalton Trans 2000:643–646

    Article  Google Scholar 

  • Uhl W, Cuypers L, Harms K, Kaim W, Wanner M, Winter R, Koch R, Saak W (2001a) Ga9(CMe3)9, an Important new building block in the structural chemistry of the alkylelement(I) compounds E n R n (E=B–In). Angew Chem 113:589–591; Angew Chem Int Ed 40:566–568

  • Uhl W, Melle S, Geiseler G, Harms K (2001b) In3I2[C(SiMe3)3]3: synthesis of a diiodotrialkyltriindane(5) containing two In–In single bonds. Organometallics 20:3355–3357

    Article  CAS  Google Scholar 

  • Uhl W, Cuypers L, Kaim W, Schwederski B, Koch R (2003a) [Ga9(CMe3)9]: a persistent cluster radical anion, boron-analogous chemistry with the heavier homologue gallium. Angew Chem 115:2524–2526; Angew Chem Int Ed 42:2422–2423

    Google Scholar 

  • Uhl W, El-Hamdan A, Prött M, Spuhler P, Frenking G (2003b) Ga2I2[C(SiMe3)3]2: an organogallium(II) halide containing a Ga–Ga single bond. J Chem Soc Dalton Trans 2003:1360–1364

    Google Scholar 

  • Uhl W, Schmock F, Petz W (2003c) The NaCl adduct of the iron–indium compound Fe2(CO)6(µ–CO)(µ-InR)2 [R=C(SiMe3)3]: a one-dimensional coordination polymer via sodium oxygen bridges. Z Naturforsch 58b:385–388

    Google Scholar 

  • Uhl W, El-Hamdan A, Geiseler G, Harms K (2004) Ga2Br2R2 and Ga3I2R3 [R=C(SiMe3)3]: two new organoelement gallium subhalides with one or two Ga–Ga bonds. Z Anorg Allg Chem 630:821–828

    Article  Google Scholar 

  • Wiberg N, Amelunxen K, Nöth H, Schmidt M, Schwenk H (1996) Tetrasupersilyldiindium(In–In) and tetrasupersilyldithallium(TlTl): (tBu3Si)2M−M(SitBu3)2 (M=In, Tl). Angew Chem 108:110–112; Angew Chem Int Ed Engl 35:65–67

    Google Scholar 

  • Wiberg N, Amelunxen K, Blank T, Nöth H, Knizek J (1998) Tetrasupersilyldialuminum [(t-Bu)3Si]2Al−Al[Si(t-Bu)3]2: the dialane(4) with the longest Al−Al bond to date. Organometallics 17:5431–5433

    Article  CAS  Google Scholar 

  • Wiberg N, Amelunxen K, Lerner H-W, Nöth H, Ponikwar W, Schwenk H (1999a) Tetrasupersilyl-tetrahedro-tetragallane (tBu3Si)4Ga4: a tetrahedron with especially compact Ga4 tetrahedral framework. J Organomet Chem 574:246–251

    Article  CAS  Google Scholar 

  • Wiberg N, Blank T, Nöth H, Ponikwar W (1999b) Dodecaindane (tBu3Si)8In12: a compound with an In12 deltapolyhedron framework. Angew Chem 111:887–890; Angew Chem Int Ed 38:839–841

    Google Scholar 

  • Wiberg N, Blank T, Kaim W, Schwederski B, Linti G (2000) Compounds of silicon and homologues, 134 supersilyl compounds of boron and homologues, 10 tri(supersilyl)dialanyl (tBu3Si)3Al2* and tetra(supersilyl)cyclotrialanyl (tBu3Si)4Al3*: new stable radicals of a group 13 element from thermolysis of (tBu3Si)4Al2. Eur J Inorg Chem 2000:1475–1481

    Article  Google Scholar 

  • Wiberg N, Blank T, Lerner H-W, Fenske D, Linti G (2001) R4*Tl3Cl and R6*Tl6Cl2 (R*=SitBu3): the first compounds with larger clusters containing covalently linked thallium atoms. Angew Chem 113:1275–1278; Angew Chem Int Ed 40:1232–1235

    Google Scholar 

  • Wiberg N, Blank T, Westerhausen M, Schneiderbauer S, Schnöckel H, Krossing I, Schnepf A (2002) Disodium tetrasupersilyltetragallanediide Na2Ga4R*4·2THF (R*=SitBu3): preparation of a novel gallium cluster compound via dichlorodisupersilyldigallane R*2Ga2Cl2. Eur J Inorg Chem 2002:351–356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Uhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhl, W. Tetrahedral homonuclear organoelement clusters and subhalides of aluminium, gallium and indium. Naturwissenschaften 91, 305–319 (2004). https://doi.org/10.1007/s00114-004-0534-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-004-0534-8

Keywords

Navigation