Naturwissenschaften

, Volume 91, Issue 5, pp 209–214 | Cite as

A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry?

  • Birgit C. Schlick-Steiner
  • Florian M. Steiner
  • Helmut Höttinger
  • Alexej Nikiforov
  • Robert Mistrik
  • Christa Schafellner
  • Peter Baier
  • Erhard Christian
Short Communication

Abstract

Deception is a crucial yet incompletely understood strategy of social parasites. In central Europe, the Mountain Alcon Blue, Maculinea rebeli, a highly endangered butterfly, parasitises several Myrmica ant species. Caterpillars gain access to host nests probably by faking the ants’ odour. We analysed gas chromatography–mass spectrometry data of body surface hydrocarbons of pre-adoption and hibernated larvae of Maculinea rebeli and of their host species Myrmica sabuleti and M. schencki. Data were ordinated by different methods, based on similarities in the relative quantities of compounds between chromatograms. The two Myrmica species exhibit species-specific profiles. The Maculinea rebeli pre-adoption larva has a complex profile that simultaneously contains species-specific substances of the two investigated host species. This evidence leads to the interpretation that, in central Europe, Maculinea rebeli is predisposed for multi-host use by the chemical signature of its pre-adoption larva. The Maculinea rebeli larva clearly does not rely on an “intersection-odour” of compounds common to all host ant species, but synthesises an “aggregate-odour” containing specific compounds of each of the investigated hosts. We term this previously unknown chemical strategy “aggregate-odour multi-host mimicry”.

References

  1. Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426CrossRefGoogle Scholar
  2. Als TD, Nash DR, Boomsma JJ (2001) Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim Behav 62:99–106CrossRefGoogle Scholar
  3. Als TD, Nash DR, Boomsma JJ (2002) Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol Entomol 27:403–414CrossRefGoogle Scholar
  4. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143Google Scholar
  5. Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  6. Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46:213–226Google Scholar
  7. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154Google Scholar
  8. Elmes GW, Thomas JA, Wardlaw JC (1991) Larvae of Maculinea rebeli, a large-blue butterfly, and their Myrmica host ants: wild adoption and behaviour in ant-nests. J Zool Lond 223:447–460Google Scholar
  9. Elmes GW, Thomas JA, Hammerstedt O, Munguira ML, Martin J, Made JG van der (1994) Differences in host-ant specificity between Spanish, Dutch and Swedish populations of the endangered butterfly, Maculinea alcon (Denis et Schiff.) (Lepidoptera). Mem Zool 48:55–68Google Scholar
  10. Elmes GW, Thomas JA, Wardlaw JC, Hochberg ME, Clarke RT, Simcox DJ (1998) The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J Insect Cons 2:67–78CrossRefGoogle Scholar
  11. Elmes GW, Thomas JA, Munguira ML, Fiedler K (2001) Larvae of lycaenid butterflies that parasitize ant colonies provide exceptions to normal insect growth rules. Biol J Linn Soc 73:259–278CrossRefGoogle Scholar
  12. Elmes GW, Akino T, Thomas JA, Clarke RT, Knapp JJ (2002) Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130:525–535CrossRefGoogle Scholar
  13. Hölldobler B, Wilson EO (1990) The ants. Belknap, Harvard University Press, Cambridge, Mass.Google Scholar
  14. Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science 210:431–433Google Scholar
  15. Howard RW, McDaniel CA, Blomquist GJ (1982) Chemical mimicry as an integrating mechanism for three termitophiles associated with Reticulitermes virginicus (Banks). Psyche 89:157–167Google Scholar
  16. Kohonen T (2001) Self-organizing maps. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Krzanowski WJ (1988) Principles of multivariate analysis: a user’s perspective. Clarendon Press, OxfordGoogle Scholar
  18. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599PubMedGoogle Scholar
  19. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771Google Scholar
  20. Schlick-Steiner BC, Steiner FM, Höttinger H (2002) Gefährdung und Schutz des Kreuzenzian-Ameisen-Bläulings Maculinea rebeli in Niederösterreich und Burgenland (Lepidoptera, Lycaenidae). Linzer Biol Beitr 34:349–376Google Scholar
  21. Schönrogge K, Wardlaw JC, Thomas JA, Elmes GW (2000) Polymorphic growth rates in myrmecophilous insects. Proc R Soc Lond B 267:771–777CrossRefPubMedGoogle Scholar
  22. Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405Google Scholar
  23. Steiner FM, Schlick-Steiner BC, Nikiforov A, Kalb R, Mistrik R (2002) Cuticular hydrocarbons of Tetramorium ants from Central Europe: analysis of GC-MS data with self-organizing maps (SOM) and implications for systematics. J Chem Ecol 28:2569–2584CrossRefPubMedGoogle Scholar
  24. Steiner FM, Sielezniew M, Schlick-Steiner BC, Höttinger H, Stankiewicz A, Górnicki A (2003) Host specificity revisited: new data on Myrmica host ants of the lycaenid butterfly Maculinea rebeli. J Insect Cons 7:1–6CrossRefGoogle Scholar
  25. Swaay C van, Warren M (1999) Red data book of European butterflies (Rhopalocera). Council of Europe, StrasbourgGoogle Scholar
  26. Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998) Population dynamics in the genus Maculinea (Lepidoptera: Lycaenidae). In: Dempster JP, McLean IFG (eds) Insect populations. Kluwer Academic, Dordrecht, pp 261–290Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Birgit C. Schlick-Steiner
    • 1
    • 2
  • Florian M. Steiner
    • 1
    • 2
  • Helmut Höttinger
    • 1
  • Alexej Nikiforov
    • 3
  • Robert Mistrik
    • 4
  • Christa Schafellner
    • 2
  • Peter Baier
    • 2
  • Erhard Christian
    • 1
  1. 1.Institute of ZoologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Institute of Forest Entomology, Forest Pathology and Forest ProtectionUniversity of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.Institute of Organic ChemistryUniversity of ViennaViennaAustria
  4. 4.HighChem Ltd BratislavaSlovakia

Personalised recommendations