Naturwissenschaften

, Volume 91, Issue 6, pp 255–276

The modern theory of biological evolution: an expanded synthesis

Review

Abstract

In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin’s Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin’s perspective. Weismann’s neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin’s dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the “modern synthesis” is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.

References

  1. Ahlberg PE, Clack JA, Luksevics E (1996) Rapid braincase evolution between Panderichthys and the earliest tetrapods. Nature 381:61–64CrossRefGoogle Scholar
  2. Alvarez W (1997) T. rex and the crater of doom. Princeton University Press, Princeton, N.J.Google Scholar
  3. Andersson M (1994) Sexual selection. Princeton University Press, Princeton, N.J.Google Scholar
  4. Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764PubMedGoogle Scholar
  5. Bell G (1997) Selection: the mechanism of evolution. Chapman and Hall, New YorkGoogle Scholar
  6. Bengston S (1998) Animal embryos in deep time. Nature 391:529–530CrossRefGoogle Scholar
  7. Benton MJ (1997) Vertebrate palaeontology (2nd edn). Chapman and Hall, LondonGoogle Scholar
  8. Benton MJ, Harper DAT (1997) Basic palaeontology. Addison Wesley Longman, EssexGoogle Scholar
  9. Benton MJ, Pearson PN (2001) Speciation in the fossil record. Trends Ecol Evol 16:405–411Google Scholar
  10. Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365CrossRefGoogle Scholar
  11. Beurton PJ (2002) Ernst Mayr through time on the biological species concept: a conceptual analysis. Theory Biosci 121:81–98Google Scholar
  12. Bokma F (2002) Detection of punctuated equilibrium from molecular phylogenies. J Evol Biol 15:1048–1055CrossRefGoogle Scholar
  13. Bowler PJ (1984) Evolution: the history of an idea. University of California Press, Berkeley, Calif.Google Scholar
  14. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155Google Scholar
  15. Briggs DEG, Crowther PR (eds) (1990) Palaeobiology: a synthesis. Blackwell Science, OxfordGoogle Scholar
  16. Bull JJ, Wichman HA (2001) Applied evolution. Annu Rev Ecol Syst 32:183–217CrossRefGoogle Scholar
  17. Burt A (2000) Perspective: sex, recombination and the efficacy of selection: was Weismann right ? Evolution 54:337–351PubMedGoogle Scholar
  18. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp: implications for the evolution of sex, multicellularity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404Google Scholar
  19. Butterfield NJ (2001) Paleobiology of the late Mesoproterozoic (ca. 1200 Ma) Huntington Formation, Somerset Island, arctic Canada. Precambrian Res 111:235–256CrossRefGoogle Scholar
  20. Carroll RL (1997) Patterns and processes of vertebrate evolution. Cambridge University Press, CambridgeGoogle Scholar
  21. Carroll RL (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32CrossRefPubMedGoogle Scholar
  22. Carroll RL (2002) Evolution of the capacity to evolve. J Evol Biol 15:911–921CrossRefGoogle Scholar
  23. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109PubMedGoogle Scholar
  24. Clack JA (2002) An early tetrapod from Romers gap. Nature 418:72–76CrossRefPubMedGoogle Scholar
  25. Clutton-Brock T (2002) Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296:69–72CrossRefPubMedGoogle Scholar
  26. Conway Morris S (2000) The Cambrian “explosion”: slow-fuse or megatonnage? Proc Natl Acad Sci USA 97:4426–4429CrossRefPubMedGoogle Scholar
  27. Cowen R (2000) History of life. (3rd edn). Blackwell Science, OxfordGoogle Scholar
  28. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  29. Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, LondonGoogle Scholar
  30. Darwin C (1872) On the origin of species (6th edn). John Murray, LondonGoogle Scholar
  31. Darwin C, Wallace A (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J Proc Linn Soc Lond 3:45–63Google Scholar
  32. Dawkins R (2002) The reading of the Darwin-Wallace papers commemorated – in the Royal Academy of Arts. Linnean 18:17–24Google Scholar
  33. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  34. Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082Google Scholar
  35. Domning DP (2001) The earliest known fully quadrupedal sirenian. Nature 413:625–627CrossRefPubMedGoogle Scholar
  36. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469CrossRefPubMedGoogle Scholar
  37. Elena SF, Cooper VS, Lenski RE (1996) Punctuated evolution caused by selection of rare beneficial mutations. Science 272:1802–1804PubMedGoogle Scholar
  38. Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, N.J.Google Scholar
  39. Erwin DH (2000) Macroevolution is more than repeated rounds of microevolution. Evol Dev 2:78–84CrossRefPubMedGoogle Scholar
  40. Fay JC, Wyckoff GJ, Wu C-I (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415:1024–1026CrossRefPubMedGoogle Scholar
  41. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, OxfordGoogle Scholar
  42. Fleagle JG (2001) The unfused synthesis. Evol Anthropol 10:191CrossRefGoogle Scholar
  43. Futuyma DJ (1995) Science on trial: the case for evolution. Sinauer, Sunderland, Mass.Google Scholar
  44. Futuyma DJ (1998) Evolutionary biology (3rd edn). Sinauer, Sunderland, Mass.Google Scholar
  45. Gilbert SF (2003) Opening Darwin’s black box: teaching evolution through developmental genetics. Nat Rev Genet 4:735–741CrossRefPubMedGoogle Scholar
  46. Golding GB, Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15:355–369PubMedGoogle Scholar
  47. Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven, Conn.Google Scholar
  48. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, Mass.Google Scholar
  49. Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:223–227CrossRefPubMedGoogle Scholar
  50. Grant PR, Grant, BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711CrossRefPubMedGoogle Scholar
  51. Griffin AS, West SA (2002) Kin selection: fact and fiction. Trends Ecol Evol 17:15–21CrossRefGoogle Scholar
  52. Haeckel E (1874) The gastraea theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. Q J Microsc Soc 14:142–165Google Scholar
  53. Hall BK (1999) Evolutionary developmental biology. Kluwer Academic, DordrechtGoogle Scholar
  54. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  55. Halliday AN (2001) In the beginning. Nature 409:144–145CrossRefPubMedGoogle Scholar
  56. Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Annu Rev Ecol Syst 3:193–232CrossRefGoogle Scholar
  57. Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites: a review. Proc Natl Acad Sci USA 87:3566–3573PubMedGoogle Scholar
  58. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, Mass.Google Scholar
  59. Howard DJ, Berlocher SH (eds) (1998) Endless forms: species and speciation. Oxford University Press, New YorkGoogle Scholar
  60. Huxley JS (1942) Evolution: the modern synthesis. Allen and Unwin, LondonGoogle Scholar
  61. Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289:432–436CrossRefPubMedGoogle Scholar
  62. Jost J (2003) On the notion of fitness, or: the selfish ancestor. Theory Biosci 121:331–350Google Scholar
  63. Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221CrossRefPubMedGoogle Scholar
  64. Junker T (2004) Die zweite Darwinsche Revolution. Geschichte des Synthetischen Darwinismus in Deutschland 1924 bis 1950. Basilisken, Marburg, GermanyGoogle Scholar
  65. Junker T, Engels E-M (eds) (1999) Die Entstehung der Synthetischen Theorie. Beiträge zur Geschichte der Evolutionsbiologie in Deutschland 1930–1950. Verlag für Wissenschaft und Bildung, BerlinGoogle Scholar
  66. Junker T, Hoßfeld U (2001) Die Entdeckung der Evolution. Eine revolutionäre Theorie und ihre Geschichte. Wissenschaftliche Buchgesellschaft, Darmstadt, GermanyGoogle Scholar
  67. Kakutani T (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 43:1106–1111CrossRefPubMedGoogle Scholar
  68. Kellogg EA (2000) The grasses: a case study in macroevolution. Annu Rev Ecol Syst 31:217–238CrossRefGoogle Scholar
  69. Kemp TS (1999) Fossils and evolution. Oxford University Press, OxfordGoogle Scholar
  70. Klak C, Reeves G, Hedderson T (2004) Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427:63–65CrossRefPubMedGoogle Scholar
  71. Knoll AH (1999) A new molecular window on early life. Science 285:1025–1026CrossRefPubMedGoogle Scholar
  72. Knoll AH (2003) Life on a young planet: the first three billion years of evolution on earth. Princeton University Press, Princeton, N.J.Google Scholar
  73. Krebs JR, Davies NB (1993) An introduction to behavioural ecology (3rd edn). Blackwell Science, OxfordGoogle Scholar
  74. Kutschera U (2001) Evolutionsbiologie. Eine allgemeine Einführung. Parey, BerlinGoogle Scholar
  75. Kutschera U (2002) Bacterial colonization of sunflower cotyledons during seed germination. J Appl Bot 76:96–98Google Scholar
  76. Kutschera U (2003a) A comparative analysis of the Darwin–Wallace papers and the development of the concept of natural selection. Theory Biosci 122:343–359Google Scholar
  77. Kutschera U (2003b) Designer scientific literature. Nature 423:116CrossRefGoogle Scholar
  78. Kutschera U, Wirtz P (2001) The evolution of parental care in freshwater leeches. Theory Biosci 120:115–137Google Scholar
  79. Lee MSY (1996) Correlated progression and the origin of turtles. Nature 379:812–815Google Scholar
  80. Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814PubMedGoogle Scholar
  81. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of complex features. Nature 423:139–144CrossRefPubMedGoogle Scholar
  82. Levin DA (2000) The origin, expansion, and demise of plant species. Oxford University Press, OxfordGoogle Scholar
  83. Mahner M, Bunge M (1997) Foundations of biophilosophy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  84. Margulis L (1993) Symbiosis in cell evolution: microbial communities in the Archean and Proterozoic eons (2nd edn). WH Freeman, New YorkGoogle Scholar
  85. Margulis L, Schwartz KV (1998) Five kingdoms: an illustrated guide to the phyla of life on Earth (3rd edn). WH Freeman, New YorkGoogle Scholar
  86. Martin W, Borst P (2003) Secondary loss of chloroplasts in trypanosomes. Proc Natl Acad Sci USA 100:765–767CrossRefPubMedGoogle Scholar
  87. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 358:59–85CrossRefGoogle Scholar
  88. Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539PubMedGoogle Scholar
  89. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  90. Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, Mass.Google Scholar
  91. Mayr E (1982) The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, Mass.Google Scholar
  92. Mayr E (1988) Toward a new philosophy of biology: observations of an evolutionist. Harvard University Press, Cambridge, Mass.Google Scholar
  93. Mayr E (1991) One long argument: Charles Darwin and the genesis of modern evolutionary thought. Harvard University Press, Cambridge, Mass.Google Scholar
  94. Mayr E (1992) A local flora and the biological species concept. Am J Bot 79:222–238Google Scholar
  95. Mayr E (1993) What was the evolutionary synthesis? Trends Ecol Evol 8:31–34CrossRefGoogle Scholar
  96. Mayr E (1997) This is biology: the science of the living world. Harvard University Press, Cambridge, Mass.Google Scholar
  97. Mayr E (2001) What evolution is. Basic Books, New YorkGoogle Scholar
  98. Mayr E (2002) Die Autonomie der Biologie. Naturwiss Rundschau 55:23–29Google Scholar
  99. Mayr E, Diamond J (2001) The birds of northern Melanesia. Oxford University Press, New YorkGoogle Scholar
  100. Mayr E, Provine W (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, Mass.Google Scholar
  101. Meyer A (1993) Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol Evol 8:279–284CrossRefGoogle Scholar
  102. Meyer A (1998) Hox gene variation and evolution. Nature 391:225–228CrossRefPubMedGoogle Scholar
  103. Meyer A, Zardoya R (2003) Recent advances in the (molecular) phylogeny of vertebrates. Annu Rev Ecol Syst 34:311–338CrossRefGoogle Scholar
  104. Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553CrossRefPubMedGoogle Scholar
  105. Møller AP, Alatalo RV (1999) Good-genes effects in sexual selection. Proc R Soc Lond B 266:85–91CrossRefGoogle Scholar
  106. Motani R, Minoura N, Ando T (1998) Ichthyosaurian relationships illuminated by new primitive skeletons from Japan. Nature 393:255–257CrossRefGoogle Scholar
  107. Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, ChicagoGoogle Scholar
  108. Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, ChicagoGoogle Scholar
  109. Niklas KJ (1999) Evolutionary walks through a land plant morphospace. J Exp Bot 50:39–52CrossRefGoogle Scholar
  110. Niklas KJ (2000a) The evolution of plant body plants: a biomechanical perspective. Ann Bot 85:411–438CrossRefGoogle Scholar
  111. Niklas KJ (2000b) Modeling fossil plant form–function relationships: a critique. In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective. Paleontological Society, Kans., pp 289–304Google Scholar
  112. Nilsson D-E, Pelger S (1994) A pessimistic estimate of the time required for an eye to evolve. Proc R Soc Lond B 256:53–58PubMedGoogle Scholar
  113. Oakley TH (2003) The eye as a replicating and diverging, modular developmental unit. Trends Ecol Evol 18:623–627CrossRefGoogle Scholar
  114. Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98:805–808CrossRefPubMedGoogle Scholar
  115. Page RDM, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Blackwell Science, OxfordGoogle Scholar
  116. Panhuis T, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. Trends Ecol Evol 16:364–371Google Scholar
  117. Pennisi E (2003) Colourful males flaunt their health. Science 300:29–30CrossRefPubMedGoogle Scholar
  118. Pennock RT (2003) Creationism and intelligent design. Annu Rev Genom Hum Genet 4:143–163CrossRefGoogle Scholar
  119. Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore, Md.Google Scholar
  120. Raup DM (1994) The role of extinction in evolution. Proc Natl Acad Sci USA 91:6758–6763PubMedGoogle Scholar
  121. Reif W-E, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91Google Scholar
  122. Rensch B (1947) Neuere Probleme der Abstammungslehre. Die transspezifische Evolution. Enke, Stuttgart, GermanyGoogle Scholar
  123. Rice WR, Chippindale AK (2001) Sexual recombination and the power of natural selection. Science 294:555–559PubMedGoogle Scholar
  124. Romanes GJ (1895) Darwin and after Darwin, vol 2. Open Court, ChicagoGoogle Scholar
  125. Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917CrossRefPubMedGoogle Scholar
  126. Rubidge BS, Sidor CA (2001) Evolutionary patterns among Permo-Triassic therapsids. Annu Rev Ecol Syst 32:449–480CrossRefGoogle Scholar
  127. Ruse M (1996) Monad to man: the concept of progress in evolutionary biology. Harvard University Press, Cambridge, Mass.Google Scholar
  128. Sage RF, Monson RK (eds) (1999) C4 plant biology. Academic Press, LondonGoogle Scholar
  129. Salvini-Plawen LV, Mayr E (1977) On the evolution of photoreceptors and eyes. Evol Biol 10:207–263Google Scholar
  130. Schierwater B, DeSalle R (2001) Current problems with the zootype and the early evolution of Hox genes. J Exp Zool 291:169–174CrossRefPubMedGoogle Scholar
  131. Schilthuizen M (2001) Frogs, flies and dandelions: the making of species. Oxford University Press, OxfordGoogle Scholar
  132. Schluter D (2001) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  133. Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646PubMedGoogle Scholar
  134. Schopf JW (1999) Cradle of life: the discovery of Earth’s earliest fossils. Princeton University Press, Princeton, N.J.Google Scholar
  135. Schuster P (2001) Evolution in silico and in vitro: the RNA model. Biol Chem 382:1301–1314PubMedGoogle Scholar
  136. Schütze P, Freitag H, Weising K (2003) An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr (Chenopodiaceae). Plant Syst Evol 239:257–286CrossRefGoogle Scholar
  137. Scott EC, Branch G (2003) Evolution: what’s wrong with ‘teaching the controversy’. Trends Ecol Evol 18:499–502CrossRefGoogle Scholar
  138. Seligmann H, Amzallag GN (2002) Chemical interactions between amino acid and RNA: multiplicity of levels of specificity explains origin of the genetic code. Naturwissenschaften 89:542–551PubMedGoogle Scholar
  139. Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147PubMedGoogle Scholar
  140. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature 410:77–81PubMedGoogle Scholar
  141. Simons AM (2002) The continuity of microevolution and macroevolution. J Evol Biol 15:688–701CrossRefGoogle Scholar
  142. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  143. Simpson GG (1949) The meaning of evolution: a study of the history of life and of its significance for man. Yale University Press, New Haven, Conn.Google Scholar
  144. Smocovitis VB (1996) Unifying biology: the evolutionary synthesis and evolutionary biology. Princeton University Press, Princeton, N.J.Google Scholar
  145. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–1057CrossRefPubMedGoogle Scholar
  146. Stanley SM (1979) Macroevolution: pattern and process. WH Freeman, San FranciscoGoogle Scholar
  147. Stanley SM (1985) Rates of evolution. Paleobiology 11:13–26Google Scholar
  148. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  149. Stebbins GL (1971) Process of organic evolution (2nd edn). Prentice-Hall, N.J.Google Scholar
  150. Storch V, Welsch U, Wink M (2001) Evolutionsbiologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  151. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542CrossRefPubMedGoogle Scholar
  152. Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904CrossRefPubMedGoogle Scholar
  153. Tchernov E, Rieppel O, Zaher H, Polcyn MJ, Jacobs LL (2000) A fossil snake with limbs. Science 287:2010–2012CrossRefPubMedGoogle Scholar
  154. Thewissen JGM, Williams EM (2002) The early radiation of cetacea (mammalia): evolutionary pattern and developmental correlations. Annu Rev Ecol Syst 33:73–90CrossRefGoogle Scholar
  155. Trillmich F, Diesel R (2002) Parental care. In: Bateson PPG, Alleva E (eds) Encyclopedia of biology. Academic Press, New York, pp 313–325Google Scholar
  156. Wahl LM, Gerrish PJ (2001) The probability that beneficial mutations are lost in populations with periodic bottlenecks. Evolution 55:2606–2610PubMedGoogle Scholar
  157. Wallace AR (1889) Darwinism. An exposition of the theory of natural selection with some of its applications. MacMillan, LondonGoogle Scholar
  158. Weismann A (1892) Das Keimplasma. Eine Theorie der Vererbung. Fischer, Jena, GermanyGoogle Scholar
  159. Wellnhofer P (2002) Die befiederten Dinosaurier Chinas. Naturwiss Rundschau 55:465–477Google Scholar
  160. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedGoogle Scholar
  161. Wilf P, Johnson KR, Huber BT (2003) Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci USA 100:599–604CrossRefPubMedGoogle Scholar
  162. Woese C (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747CrossRefPubMedGoogle Scholar
  163. Wood B (2002) Hominid revelations from Chad. Nature 418:133–135CrossRefPubMedGoogle Scholar
  164. Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four-winged dinosaurs from China. Nature 421:335–340CrossRefPubMedGoogle Scholar
  165. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRefGoogle Scholar
  166. Zhou Z, Zheng S (2003) The missing link in Ginkgo evolution. Nature 423:821–822CrossRefPubMedGoogle Scholar
  167. Zimmer C (1998) At the water’s edge: macroevolution and the transformation of life. Free Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für BiologieUniversität KasselKasselGermany
  2. 2.Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations