Advertisement

Naturwissenschaften

, Volume 91, Issue 2, pp 97–100 | Cite as

The ladybird Thalassa saginata, an obligatory myrmecophile of Dolichoderus bidens ant colonies

  • Jérôme Orivel
  • Pablo Servigne
  • Philippe Cerdan
  • Alain Dejean
  • Bruno Corbara
Short Communication

Abstract

The larvae and pupae of the ladybird Thalassa saginata develop inside colonies of the dolichoderine ant Dolichoderus bidens. This association is the first specific and obligatory relationship recorded between ants and ladybirds. The ants provide shelter and protection to the larvae but the diet of the latter remains unclear. The integration of T. saginata larvae into the ant colonies is achieved by mimicking the cuticular patterns of the ants’ brood. Moreover, the larvae secrete substances from their hairs and anal gland that are likely to enhance their attractiveness.

Keywords

Anal Gland Host Colony Cuticular Compound Chemical Mimicry Cuticular Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Nicole Berti (Museum National d’Histoire Naturelle, Paris) for the identification of the ladybird specimens, to Andrea Dejean for proofreading the manuscript, and to anonymous referees for their in-depth reading and relevant remarks. This work was supported by the French “Ministère de l’Aménagement du Territoire et de l’Environnement” (research agreement no 92191 and ECOFOR No 98) and by the French CNRS. We would like to thank the IRD of Cayenne and Océan Vert/Radeau des Cimes 96 for their logistical support.

References

  1. Akino T (2002) Chemical camouflage by myrmecophilous beetles Zyras comes (Coleoptera: Staphylinidae) and Diaritiger fossulatus (Coleoptera: Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera: Formicidae). Chemoecology 12:83–89CrossRefGoogle Scholar
  2. Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond 266:1419–1426CrossRefGoogle Scholar
  3. Berti N, Boulard M, Duverger C (1983) Fourmis et coccinelles: revue bibliographique et observations nouvelles. Bull Soc Entomol Fr 88:271–274Google Scholar
  4. Chapin EA (1966) A new species of myrmecophilous Coccinelidae, with notes on other Hyperaspini (Coleoptera). Psyche 73:278–283Google Scholar
  5. Dejean A, Corbara B, Orivel J (1999) The arboreal ant mosaic in two Atlantic rain forests. Selbyana 20:133–145Google Scholar
  6. Dejean A, Corbara B, Orivel J, Snelling RR, Delabie JHC, Belin-Depoux M (2000) The importance of ant gardens in the pioneer vegetal formations of French Guiana. Sociobiology 35:425–439Google Scholar
  7. Delabie JHC, Benton FP, Medeiros MA de (1991) La polydomie chez les Formicidae arboricoles dans les cacaoyères du Brésil: optimisation de l’occupation de l’espace ou stratégie défensive? Actes Coll Insectes Soc 7:173–178Google Scholar
  8. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154Google Scholar
  9. Fiedler K (1998) Lycaenid–ant interactions of the Maculinea type: tracing their historical roots in a comparative framework. J Insect Conserv 2:3–14CrossRefGoogle Scholar
  10. Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. Howard RW, Akre RD, Garnett WB (1990) Chemical mimicry of an obligate predator of carpenter ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 83:607–616Google Scholar
  12. Hughes WOH, Howse PE, Goulson D (2001) Mandibular gland chemistry of grass-cutting ants: species, caste, and colony variation. J Chem Ecol 27:109–124CrossRefPubMedGoogle Scholar
  13. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:576–599CrossRefGoogle Scholar
  14. Majerus MEN (1989) Coccinella magnifica (Redtenbacher): a myrmecophilous labybird. Br J Entomol Nat Hist 2:97–107Google Scholar
  15. Navarrete Heredia JL (2001) Beetles associated with Atta and Acromyrmex ants (Hymenoptera: Formicidae: Attini). Trans Am Entomol Soc 127:381–429Google Scholar
  16. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771Google Scholar
  17. Sloggett JJ, Wood RA, Majerus MEN (1998) Adaptations of Coccinella magnifica Redtenbacher, a myrmecophilous coccinellid, to aggression by wood ants (Formica rufa group). I. Adult behavioral adaptation, its ecological context and evolution. J Insect Behav 11:889–904CrossRefGoogle Scholar
  18. Vander Meer RK, Wojcik DP (1982) Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:806–808Google Scholar
  19. Völkl W (1995) Behavioral and morphological adaptations of the Coccinellid, Platynapsis luteorubra for exploiting ant-attended resources (Coleoptera: Coccinellidae). J Insect Behav 8:653–670Google Scholar
  20. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Jérôme Orivel
    • 1
  • Pablo Servigne
    • 2
  • Philippe Cerdan
    • 3
  • Alain Dejean
    • 1
  • Bruno Corbara
    • 2
  1. 1.Laboratoire d’Evolution et Diversité Biologique, UMR-CNRS 5174 Université Toulouse IIIToulouse cedex 4France
  2. 2.LAPSCO, UMR-CNRS 6024Université Blaise PascalClermont-Ferrand cedexFrance
  3. 3.Laboratoire Environnement de Petit Saut (HYDRECO)Kourou cedexFrance

Personalised recommendations