Advertisement

Naturwissenschaften

, Volume 91, Issue 2, pp 51–65 | Cite as

Forensic entomology

  • Jens AmendtEmail author
  • Roman Krettek
  • Richard Zehner
Review

Abstract

Necrophagous insects are important in the decomposition of cadavers. The close association between insects and corpses and the use of insects in medicocriminal investigations is the subject of forensic entomology. The present paper reviews the historical background of this discipline, important postmortem processes, and discusses the scientific basis underlying attempts to determine the time interval since death. Using medical techniques, such as the measurement of body temperature or analysing livor and rigor mortis, time since death can only be accurately measured for the first two or three days after death. In contrast, by calculating the age of immature insect stages feeding on a corpse and analysing the necrophagous species present, postmortem intervals from the first day to several weeks can be estimated. These entomological methods may be hampered by difficulties associated with species identification, but modern DNA techniques are contributing to the rapid and authoritative identification of necrophagous insects. Other uses of entomological data include the toxicological examination of necrophagous larvae from a corpse to identify and estimate drugs and toxicants ingested by the person when alive and the proof of possible postmortem manipulations. Forensic entomology may even help in investigations dealing with people who are alive but in need of care, by revealing information about cases of neglect.

Keywords

Malathion Crime Scene Postmortem Interval Myiasis Death Scene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Many thanks to Prof. Dr. Dietrich Mebs (Frankfurt, Germany) and Prof. Dr. Richard Wall (Bristol, UK) for their helpful comments on the language and content of the manuscript.

References

  1. Allen JC (1976) A modified sine wave method for calculating day degrees. Environ Entomol 5:388–396Google Scholar
  2. Amendt J, Krettek R, Niess C, Zehner R, Bratzke H (2000) Forensic entomology in Germany. Forensic Sci Int 113:309–314CrossRefPubMedGoogle Scholar
  3. Ames C, Turner B (2003) Low temperature episodes in development of blowflies: implications for postmortem interval estimation. Med Vet Entomol 17:178–186CrossRefPubMedGoogle Scholar
  4. Anderson GS (1995) The use of insects in death investigations: an analysis of cases in British Columbia over a five year period. Can Soc Forensic J 28:277–292Google Scholar
  5. Anderson GS (2000) Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). J Forensic Sci 45:824–32PubMedGoogle Scholar
  6. Anderson GS (2001) Succession on carrion and its relationship to determining time of death. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, Fla., pp 143–175Google Scholar
  7. Anderson GS, Cervenka VJ (2002) Insects associated with the body: their use and analyses. In: Haglund WD, Sorg MH (eds) Advances in forensic taphonomy: method, theory and archaeological perspectives. CRC, Boca Raton, Fla., pp 173–200Google Scholar
  8. Anderson GS, Hobischak NR (2004) Decomposition of carrion in the marine environment in British Columbia, Canada. Int J Legal Med:118Google Scholar
  9. Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625Google Scholar
  10. Anonymous (1814) Instruction für die oeffentlich angestellten Aerzte und Wundaerzte in den k.k. oesterreichischen Staaten, wie sie sich bei gerichtlichen Leichenschauen zu benehmen haben. Schoenfeld, PragueGoogle Scholar
  11. Arnaldos I, Romera E, García MD, Luna A (2001) An initial study on the succession of sarcosaprophagous Diptera (Insecta) on carrion in the southeastern Iberian peninsula. Int J Legal Med 114:156–162PubMedGoogle Scholar
  12. Ashworth JR, Wall R (1994) Responses of the sheep blowflies Lucilia sericata and L. cuprina to odour and the development of semiochemical baits. Med Vet Entomol 8:303–309PubMedGoogle Scholar
  13. Baskerville GL, Emin P (1969) Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50:514–517Google Scholar
  14. Baumgartner DL, Greenberg B (1984) The genus Chrysomya (Diptera: Calliphoridae) in the New World. J Med Entomol 21:105–113Google Scholar
  15. Baumgartner DL, Greenberg B (1985) Distribution and medical ecology of the blow flies (Diptera: Calliphoridae) of Peru. Ann Entomol Soc Am 78:565–578Google Scholar
  16. Benecke M (1998) Random amplified polymorphic DNA (RAPD) typing of necrophageous insects (Diptera, Coleoptera) in criminal forensic studies: validation and use in practice. Forensic Sci Int 98:157–168CrossRefPubMedGoogle Scholar
  17. Benecke M (2003) Neglect of the elderly: cases and considerations. Proceedings of the first meeting of the European Association for Forensic Entomology, pp 29–30Google Scholar
  18. Bergeret M (1855) Infanticide, momification naturelle du cadavre. Ann Hyg Publique Med Leg 4:442–452Google Scholar
  19. Beyer JC, Enos WF, Stajic M (1980) Drug identification through analysis of maggots. J Forensic Sci 25:411–412PubMedGoogle Scholar
  20. Blankaart S (1690) Schauplatz derer Raupen, Würm und Maden. LeipzigGoogle Scholar
  21. Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1-12Google Scholar
  22. Bourel B, Hédouin V, Martin-Bouyer L, Becart A, Tournel G, Deveaux M, Gosset D (1999) Effects of morphine in decomposing bodies on the development of Lucilia sericata (Diptera: Calliphoridae). J Forensic Sci 44:354–358PubMedGoogle Scholar
  23. Bourel B, Fleurisse L, Hédouin V, Cailliez JC, Creusy C, Gosset D, Goff ML (2001a) Immunohistochemical contribution to the study of morphine metabolism in Calliphoridae larvae and implications in forensic entomotoxicology. J Forensic Sci 46:596–599PubMedGoogle Scholar
  24. Bourel B, Tournel G, Hédouin V, Deveaux M, Goff ML, Gosset D (2001b) Morphine extraction in necrophagous insects remains for determining ante-mortem opiate intoxication. Forensic Sci Int 120:127–131CrossRefPubMedGoogle Scholar
  25. Bourel B, Tournel G, Hedouin V, Gosset D (2004) Entomofauna of buried bodies in Northern France. Int J Legal Med:118Google Scholar
  26. Braack LEO (1981) Visitation patterns of principal species of the insect complex at carcasses in the Kruger National Park. Koedoe 24:33–49Google Scholar
  27. Byrd JH, Butler JF (1998) Effects of temperature on Sarcophaga haemorrhoidalis (Diptera: Sarcophagidae) development. J Med Entomol 35:694–698Google Scholar
  28. Campobasso CP, Introna F (2001) The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int 120:132–139CrossRefPubMedGoogle Scholar
  29. Campobasso CP, Di Vella G, Introna F (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120:18–27CrossRefPubMedGoogle Scholar
  30. Campobasso CP, Gherardi M, Caligara M, Sironi L, Introna F (2004) Drug analysis in blowfly larvae and in human tissues: a comparative study. Int J Legal Med:118Google Scholar
  31. Carlson DA, Geden CJ, Bernier UR (1999) Identification of pupal exuviae of Nasonia vitripennis and Muscidifurax raptorellus parasitoids using cuticular hydrocarbons. Biol Control 15:97–106CrossRefGoogle Scholar
  32. Carvalho LML, Linhares XL (2001) Seasonality of insect succession and pig carcass decomposition in a natural forest area in southeastern Brazil. J Forensic Sci 46:604–608PubMedGoogle Scholar
  33. Caterino MS, Cho S, Sperling FA (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 45:1-54PubMedGoogle Scholar
  34. Catts EP, Goff ML (1992) Forensic entomology in criminal investigations. Annu Rev Entomol 37:253–272CrossRefPubMedGoogle Scholar
  35. Catts EP, Haskell NH (1990) Entomology and death: a procedural guide. Joyce’s Print Shop, Clemson, USAGoogle Scholar
  36. Clark MA, Worrell MB, Pless JE (1997) Postmortem changes in soft tissues. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC, Boca Raton, Fla., pp 151–170Google Scholar
  37. Clery JM (2001) Stability of prostate specific antigen (PSA), and subsequent Y-STR typing, of Lucilia (Phaenicia) sericata (Meigen) (Diptera: Calliphoridae) maggots reared from a simulated postmortem sexual assault. Forensic Sci Int 120:72–76CrossRefPubMedGoogle Scholar
  38. Davies L (1990) Species composition and larval habitats of blow fly (Calliphoridae) populations in upland areas in England and Wales. Med Vet Entomol 4:61–88PubMedGoogle Scholar
  39. Davies L, Ratcliffe GG (1994) Development rates of some pre-adult stages in blowflies with reference to low temperatures. Med Vet Entomol 8:245–254PubMedGoogle Scholar
  40. Davis JB, Goff ML. (2000) Decomposition patterns in terrestrial and intertidal habitats on Oahu Island and Coconut Island, Hawaii. J Forensic Sci 45:836–842PubMedGoogle Scholar
  41. Deonier CC (1940) Carcass temperatures and their relation to winter blowfly populations and activity in the Southwest. J Econ Entomol 33:166–170Google Scholar
  42. Dillon N, Austin AD, Bartowsky E (1996) Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect Mol Biol 5:21–24PubMedGoogle Scholar
  43. Erzinclioglu YZ (1983) The application of entomology to forensic medicine. Med Sci Law 23:57–63PubMedGoogle Scholar
  44. Erzinclioglu YZ (1990) On the interpretation of maggot evidence in forensic cases. Med Sci Law 30:65–66PubMedGoogle Scholar
  45. Erzinclioglu YZ (1996) Blowflies. Richmond Publishing, Slough, UKGoogle Scholar
  46. Fabritius K, Klunker R (1991) Die Larven- und Puparienparasitoide von synanthropen Fliegen in Europa. Merkbl Angew Parasitenkd Schädlingsbekämpf 32:1–-24Google Scholar
  47. Faucherre J, Cherix D, Wyss C (1999) Behavior of Calliphora vicina (Diptera, Calliphoridae) under extreme conditions. J Insect Behav 12:687–690CrossRefGoogle Scholar
  48. Fisher P, Wall R, Ashworth JR (1998) Attraction of the sheep blowfly, Lucilia sericata (Diptera: Calliphoridae) to carrion bait in the field. Bull Entomol Res 88:611–616Google Scholar
  49. Fuller ME (1934) The insect inhabitants of carrion: a study in animal ecology. Council for Scientific and Industrial Research, Bulletin 82Google Scholar
  50. Gagliano-Candela R, Aventaggiato L (2001) The detection of toxic substances in entomological specimens. Int J Legal Med 114:197–203PubMedGoogle Scholar
  51. Gasser RB, Chilton NB (2001) Applications of single-strand conformation polymorphism (SSCP) to taxonomy, diagnosis, population genetics and molecular evolution of parasitic nematodes. Vet Parasitol 101:201–213CrossRefPubMedGoogle Scholar
  52. Geden CJ (1997) Development models for the filth fly parasitoids Spalangia gemina, S. cameroni, and Muscidifurax raptor (Hymenoptera: Pteromalidae) under constant and variable temperatures. Biol Control 9:185–192CrossRefGoogle Scholar
  53. Geden CJ, Bernier UR, Carlson DA, Sutton BD (1998) Identification of Muscidifurax spp., parasitoids of muscoid flies, by composition patterns of cuticular hydrocarbons. Biol Control 12:200–207CrossRefGoogle Scholar
  54. Goddard J, Lago PK (1985) Notes on blowfly (Diptera: Calliphoridae) succession on carrion in Northern Mississippi. J Entomol Sci 20:312–317Google Scholar
  55. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, N.J.Google Scholar
  56. Goff ML (1991) Comparison of insect species associated with decomposing remains recovered inside dwellings and outdoors on the island of Oahu, Hawaii. J Forensic Sci 3:748–753Google Scholar
  57. Goff ML, Flynn MM (1991) Determination of postmortem interval by arthropod succession: a case study from the Hawaiian Island. J Forensic Sci 36:607–614PubMedGoogle Scholar
  58. Goff ML, Lord WD (1994) Entomotoxicology: a new area for forensic investigation. Am J Forensic Med Pathol 15:51–57PubMedGoogle Scholar
  59. Goff ML, Lord WD (2001) Entomotoxicology: insects as toxicological indicators and the impact of drugs and toxins on insect development. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, Fla., pp 331–340Google Scholar
  60. Goff ML, Odom CB (1987) Forensic entomology in the Hawaiian Islands: three case studies. Am J Forensic Med Pathol 8:45–50PubMedGoogle Scholar
  61. Goff ML, Odom CB, Early M (1986) Estimation of postmortem interval by entomological techniques: a case study from Oahu, Hawaii. Bull Soc Vector Ecol 11:242–246Google Scholar
  62. Goff ML, Omori AI, Goodbrod JR (1989) Effect of cocaine in tissues on the rate of development of Boettcherisca peregrina (Diptera: Sarcophagidae). J Med Entomol 26:91–93PubMedGoogle Scholar
  63. Goff ML, Brown WA, Hewadikaram KA, Omori AI (1991) Effects of heroin in decomposing tissues on the development rate of Boettcherisca peregrina (Diptera: Sarcophagidae) and implications of this effect on estimation of postmortem intervals using arthropod development patterns. J Forensic Sci 36:537–542PubMedGoogle Scholar
  64. Goff ML, Miller ML, Paulson JD, Lord WD, Richards E, Omori AI (1997) Effects of 3,4-methylendioxymethamphetamine in decomposing tissues on the development of Parasarcophaga ruficornis (Diptera: Sarcophagidae) and detection of the drug in postmortem blood, liver tissue, larvae, and puparia. J Forensic Sci 42:276–280PubMedGoogle Scholar
  65. Grassberger M, Frank C (2003a) Initial study of arthropod succession on pig carrion in a central European urban habitat. J Med Entomol:40Google Scholar
  66. Grassberger M, Frank C (2003b) Temperature-dependent development of the parasitic wasp Nasonia vitripennis and its forensic implications. Med Vet Entomol 17:257–262CrossRefPubMedGoogle Scholar
  67. Grassberger M, Reiter C (2001) Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci Int 120:32–36PubMedGoogle Scholar
  68. Grassberger M, Reiter C (2002a) Effect of temperature on development of the forensically important holarctic blowfly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Sci Int 128:177–182CrossRefPubMedGoogle Scholar
  69. Grassberger M, Reiter C (2002b) Effect of temperature on development of Liopygia (=Sarcophaga) argyrostoma (Robineau-Desvoidy) (Diptera: Sarcophagidae) and its forensic implications. J Forensic Sci 47:1332–1336PubMedGoogle Scholar
  70. Greenberg B (1984) Two cases of human myiasis caused by Phaenicia sericata (Diptera: Calliphoridae) in Chicago area hospitals. J Med Entomol 21:615PubMedGoogle Scholar
  71. Greenberg B (1985) Forensic entomology: case studies. Bull Entomol Soc Am 31:25–28Google Scholar
  72. Greenberg B (1990) Nocturnal oviposition behaviour of blow flies (Diptera: Calliphoridae). J Med Entomol 27:807–810PubMedGoogle Scholar
  73. Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577PubMedGoogle Scholar
  74. Greenberg B, Kunich JC (2002) Entomology and the law: flies as forensic indicators. Cambridge University Press, CambridgeGoogle Scholar
  75. Gunatilake K, Goff ML (1989) Detection of organophosphate poisoning in a putrefying body by analyzing arthropod larvae. J Forensic Sci 34:714–716PubMedGoogle Scholar
  76. Hall MJR (1995) Trapping the flies that cause myiasis: their responses to host-stimuli. Ann Trop Med Parasitol 89:333–357PubMedGoogle Scholar
  77. Hall RD (2001) Perceptions and status of forensic entomology In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, Fla., pp 1–15Google Scholar
  78. Hall MJR, Farkas R, Kelemen F, Hosier MJ, El-Khoga JM (1995) Orientation of agents of wound myiasis to hosts and artificial stimuli in Hungary. Med Vet Entomol 9:77–84PubMedGoogle Scholar
  79. Harvey M, Dadour I, Gaudieri S (2003) Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. Forensic Sci Int 131:134–139CrossRefPubMedGoogle Scholar
  80. Haskell NH, McShaffrey DG, Hawley DA, Williams RE, Pless JE (1989) Use of aquatic insects in determining submersion interval. J Forensic Sci 34:622–632PubMedGoogle Scholar
  81. Haskell NH, Hall RD, Cervenka VJ, Clark MA (1997) On the body: insect’s life stage presence, their postmortem artifacts. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC, Boca Raton, Fla., pp 415–448Google Scholar
  82. Hauser G (1926) Ein Beitrag zum Madenfraß an menschlichen Leichen. Dtsch Z Gesamte Gerichtl Med 7:179–192Google Scholar
  83. Hedouin V, Bourel B, Becart A, Tournel G, Deveaux M, Goff ML, Gosset D (2001) Determination of drug levels in larvae of Protophormia terraenovae and Calliphora vicina (Diptera: Calliphoridae) reared on rabbit carcasses containing morphine. J Forensic Sci 46:12–14PubMedGoogle Scholar
  84. Henßge C, Madea B, Knight B, Nokes L, Krompecher T (1995) The estimation of the time since death in the early postmortem interval. Arnold, LondonGoogle Scholar
  85. Henßge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henßge CA, Hoppe B, Schneider V (2000a) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113:303–319CrossRefPubMedGoogle Scholar
  86. Henßge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henßge CA, Hoppe B, Schneider V (2000b) Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods. Int J Legal Med 113:320–331CrossRefPubMedGoogle Scholar
  87. Higley LG, Haskell NH (2001) Insect development and forensic entomology. In: Byrd JH, Castner JL (eds) forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, Fla., pp 287–302Google Scholar
  88. Hobischak NR, Anderson GS (1999) Freshwater-related death investigations in British Columbia in 1995–1996, a review of coroner’s cases. Can Soc Forensic Sci 32:97–106Google Scholar
  89. Hobischak NR, Anderson GS (2002) Time of submergence using aquatic invertebrate succession and decompositional changes. J Forensic Sci 47:142–151PubMedGoogle Scholar
  90. Holdaway FG, Evans AC (1930) Parasitism a stimulus to pupation: Alysia manducator in relation to the host Lucilia sericata. Nature 125:598–599Google Scholar
  91. Horoszkiewicz S von (1902) Casuistischer Beitrag zur Lehre von der Benagung der Leichen durch Insekten. Vierteljahresschr Gerichtl Med 23:235–239Google Scholar
  92. Introna F, Campobasso CP (2000) Forensic dipterology. In: Papp L, Darvas B (eds) Contributions to a manual of palaearctic diptera. 1. General and applied dipterology. Science Herald, Budapest, pp 793–846Google Scholar
  93. Introna F, Altamura BM, Dell’Erba A, Dattoli V (1989) Time since death definition by experimental reproduction of Lucilia sericata cycles in growth cabinet. J Forensic Sci 34:478–480Google Scholar
  94. Introna F, Lo Dico C, Caplan YH, Smialek JE (1990) Opiate analysis in cadaveric blowfly larvae as an indicator of narcotic intoxication. J Forensic Sci 35:118–122PubMedGoogle Scholar
  95. Introna F, Suman TW, Smialek JE (1991) Sarcosaprophagous fly activity in Maryland. J Forensic Sci 36:238–243PubMedGoogle Scholar
  96. Introna F, Campobasso CP, Di Fazio A (1998) Three case studies in forensic entomology from southern Italy. J Forensic Sci 43:210–214Google Scholar
  97. Introna F, Campobasso CP, Goff ML (2001) Entomotoxicology. Forensic Sci Int 120:42–47CrossRefPubMedGoogle Scholar
  98. Junqueira ACM, Lessinger AC, Azeredo-Espin AML (2002) Methods for the recovery of mitochondrial DNA sequences from museum specimens of myiasis-causing flies. Med Vet Entomol 16:39–45CrossRefPubMedGoogle Scholar
  99. Kamal AS (1958) Comparative study of thirteen species of sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera). I. Bionomics. Ann Entomol Soc Am 51:261–270Google Scholar
  100. Kaneshrajah G, Turner B (2004) Calliphora vicina larvae grow at different rates on different body tissues. Int J Legal Med:118Google Scholar
  101. Keiper JB, Chapman EG, Foote BA (1997) Midge larvae (Diptera: Chironomidae) as indicators of postmortem submersion interval of carcasses in a woodland stream: a preliminary report. J Forensic Sci. 42:1074–1079Google Scholar
  102. Kintz P, Tracqui A, Mangin P (1990) Toxicology and fly larvae on a putrefied cadaver. J Forensic Sci Soc 30:243–246PubMedGoogle Scholar
  103. Kintz P, Tracqui A, Mangin P (1994) Analysis of opiates in fly larvae sampled on a putrefied cadaver. J Forensic Sci Soc 34:95–97PubMedGoogle Scholar
  104. Knight B (1991) Forensic pathology. Edward Arnold, LondonGoogle Scholar
  105. Krahmer FL (1857) Handbuch der gerichtlichen Medizin. 2. Aufl. BerlinGoogle Scholar
  106. LaSalle J, Gauld ID (1991) Parasitic Hymenoptera and the biodiversity crisis. Redia 74:315–334Google Scholar
  107. Leclercq M (1983) Entomologie et médecine légale; datation de la mort, observation indite. Rev Med Liege 38:735–738PubMedGoogle Scholar
  108. Leclercq J, Leclercq M (1948) Données bionomiques pour Calliphora erythrocephala (Meigen) et cas d’application à la medecine légale. Bull Soc Entomol Fr 53:101–103Google Scholar
  109. Lord WD, Catts EP, Scarboro DA, Hadfield DB (1986) The green blow fly, Lucilia illustris (Meigen), as an indicator of human postmortem interval: a case of homicide from Fort Lewis, Washington. Bull Soc Vector Ecol 11:271–275Google Scholar
  110. Loxdale HD, Lushai G (1998) Molecular markers in entomology. Bull Entomol Res 88:577–600Google Scholar
  111. Malgorn Y, Coquoz R (1999) DNA typing for identification of some species of Calliphoridae: an interest in forensic entomology. Forensic Sci Int 102:111–119CrossRefPubMedGoogle Scholar
  112. Mann RW, Bass WM, Meadows L (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 35:103–111PubMedGoogle Scholar
  113. Marchenko MJ (1980) Classifying of cadaveric entomofauna. Biology of flies: the forensic medical role. Sud-Med Ekspert 23:17–20Google Scholar
  114. Marchenko MI (1988) Medico-legal relevance of cadaver entomofauna for the determination of the time since death. Acta Medicinae Et Socialis Organe Officiel De L’Academie Internationale De Medicine Legale Et De Medicine Sociale 38:257–302.Google Scholar
  115. Marchenko MJ (2001) Medicolegal relevance of cadaver entomofauna for the determination of time since death. Forensic Sci Int 120:89–109PubMedGoogle Scholar
  116. McKnight BE (1981) The washing away of wrongs: forensic medicine in thirteenth-century China. University of Michigan, Ann ArborGoogle Scholar
  117. McWatters HG, Saunders DS (1998) Maternal temperature has different effects on the photoperiodic response and duration of larval diapause in blow fly (Calliphora vicina) strains collected at two latitudes. Physiol Entomol 23:369–375CrossRefGoogle Scholar
  118. Mégnin JP (1894) La faune des cadavres: application de l’entomologie a la médecine légale. Masson et Gauthiers-Villars, ParisGoogle Scholar
  119. Mende LJK (1829) Ausführliches Handbuch der gerichtlichen Medizin für Gesetzgeber, Rechtsgelehrte, Aerzte und Wundaerzte, Teil 5Google Scholar
  120. Merrit RW, Wallace JR (2001) The role of aquatic insects in forensic investigations. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, Fla., pp 177–222Google Scholar
  121. Miller ML, Lord WD, Goff ML, Donnelly D, McDonough ET, Alexis JC (1994) Isolation of amitriptyline and nortriptyline from fly pupariae (Phoridae) and beetle exuviae (Dermestidae) associated with mummified human remains. J Forensic Sci 39:1305–1313Google Scholar
  122. Nishida K, Shinonaga S, Kano R (1986) Growth tables of fly larvae for the estimation of postmortem intervals. Ochanomizu Med J 34:9–24Google Scholar
  123. Nolte KB, Pinder RD, Lord WD (1992) Insect larvae used to detect cocaine poisoning in a decomposed body. J Forensic Sci 37:1179–1185PubMedGoogle Scholar
  124. Nuorteva P (1959a) Studies on the significance of flies in the transmission of poliomyelitis. III. The composition of the blow fly fauna and the activity of the flies in relation to the weather during the epidemic season of poliomyelitis in south Finland. Ann Entomol Fenn 25:137–162Google Scholar
  125. Nuorteva P (1959b) Studies on the significance of flies in the transmission of poliomyelitis. IV. The composition of the blow fly fauna in different part of Finland during 1958. Ann Entomol Fenn 25:137–162Google Scholar
  126. Nuorteva P (1965) The flying activity of blowflies (Diptera, Calliphoridae) in subarctic conditions. Ann Entomol Fenn 31:242–245Google Scholar
  127. Nuorteva P (1977) Sarcosaprophagous insects as forensic indicators. In: Tedeshi GC, Eckert WG, Tedeshi LG (eds) Forensic medicine: a study in trauma and environmental hazards, vol 2, Saunders, Philadelphia, pp 1072–1095Google Scholar
  128. Nuorteva P, Nuorteva SL (1982) The fate of mercury in sarcosaprophagous flies and in insects eating them. Ambio 11:34–37Google Scholar
  129. Nuorteva P, Isokoski M, Laiho K (1967) Studies on the possibilities of using blowflies (Dipt.) as medicolegal indicators in Finland. Ann Entomol Fenn 33:217–225Google Scholar
  130. Nuorteva P, Schumann H, Isokoski M, Laiho K (1974) Studies on the possibilities of using blowflies (Diptera: Calliphoridae) as medicolegal indicators in Finland. Ann Entomol Fenn 40:70–74Google Scholar
  131. O’Brien C, Turner B (2004) Impact of paracetamol on the development of Calliphora vicina larval development. Int J Legal Med:118Google Scholar
  132. Orfila MJB, Lesueur CA (1831) Traité des exhumations juridiques. ParisGoogle Scholar
  133. Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943PubMedGoogle Scholar
  134. Pääbo S, Higushi RG, Wilson AC (1989) Ancient DNA and the polymerase chain reaction. J Biol Chem 264:9709–9712PubMedGoogle Scholar
  135. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602Google Scholar
  136. Payne JA, King EW (1972) Insect succession and decomposition of pig carcases in water. J Ga Entomol Soc 7:153–162Google Scholar
  137. Payne JA, King EW, Beinhart G (1968) Arthropod succession and decomposition of buried pigs. Nature 219:1180–1181PubMedGoogle Scholar
  138. Pien K, Marichal M, Grootaert P, De Boeck G, Samyn N, Boonen T, Vits K, Wood M, Morris M (2004) The detection of nordiazepam and its metabolite oxazepam in one single postfeeding larva and puparium of Calliphora vicina (Diptera: Calliphoridae) using the LC/MS-MS. Int J Legal Med:118Google Scholar
  139. Povolný D, Verves Y (1997) The flesh-flies of central Europe. Spixiana Suppl 24:1–260Google Scholar
  140. Price PW (1997) Insect ecology. Wiley, New YorkGoogle Scholar
  141. Rath PM, Ansorg R (2000) Identification of medically important Aspergillus species by single strand conformational polymorphism (SSCP) of the PCR-amplified intergenic spacer region. Mycoses 43:381–386CrossRefPubMedGoogle Scholar
  142. Reed HB (1958) A study of dog carcass communities in Tennessee, with special references to the insects. Am Midl Nat 59:213–245Google Scholar
  143. Reinhard H (1882) Beiträge zur Gräberfauna. Verh Kaiserl-Königl Zool-Bot Ges Wien 31:207–210Google Scholar
  144. Reiter C (1984) Zum Wachstumsverhalten der Maden der blauen Schmeißfliege Calliphora vicina. Z Rechtsmed 91:295–308PubMedGoogle Scholar
  145. Reiter C, Wolleneck G (1982) Bemerkungen zur Morphologie forensisch bedeutsamer Fliegenmaden. Z Rechtsmed 89:197–206PubMedGoogle Scholar
  146. Reiter C, Wolleneck G (1983) Zur Artbestimmung der Maden forensisch bedeutsamer Schmeißfliegen. Z Rechtsmed 90:309–316PubMedGoogle Scholar
  147. Richards EN, Goff ML (1997) Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. J Med Entomol 34:328–339PubMedGoogle Scholar
  148. Rodriguez WC, Bass WM (1983) Insect activity and its relationship to decay rates of human cadavers in East Tennessee. J Forensic Sci 28:423–432Google Scholar
  149. Rodriguez WC, Bass WM (1985) Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci 30:836–852PubMedGoogle Scholar
  150. Sadler DW, Fuke C, Court F, Pounder DJ (1995) Drug accumulation and elimination in Calliphora vicina larvae. Forensic Sci Int 71:191–197CrossRefPubMedGoogle Scholar
  151. Sadler DW, Robertson L, Brown G, Fuke C, Pounder DJ (1997a) Barbiturate and analgesics in Calliphora vicina larvae. J Forensic Sci 42:481–485Google Scholar
  152. Sadler DW, Chuter G, Senevematne C, Pounder DJ (1997b) Commentary on ‘Sadler DW, Robertson L, Brown G, Fuke C, Pounder DJ’, Barbiturates and analgesics in Calliphora vicina larvae. J Forensic Sci 42:1214–1215Google Scholar
  153. Sadler DW, Richardson J, Haigh S, Bruce G, Pounder DJ (1997c) Amitryptiline accumulation and elimination in Calliphora vicina larvae. Am J Forensic Med Pathol 18:397–403CrossRefPubMedGoogle Scholar
  154. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  155. Saunders DS (1975) Manipulation of the length of the sensitive period, and the induction of pupal diapause in the flesh-fly Sarcophaga argyrostoma. J Entomol 50:107–118Google Scholar
  156. Schmitz H (1928) Phoriden in doodkisten. Natuurhist Maandbl 17:150–153Google Scholar
  157. Schneider P (1936) Leichenzerstörung durch Madenfraß. Wie lange lag die Leiche im Gebüsch? Arch Kriminol 98:216–221Google Scholar
  158. Schoenly K, Reid W (1987) Dynamics of heterotrophic succession in carrion arthropod assemblages: discrete series or a continuum of change? Oecologia 73:192–202Google Scholar
  159. Schoenly K, Goff ML, Wells JD, Lord WD (1996) Quantifying statistical uncertainty in succession-based entomological estimates of the postmortem interval in death scene investigations: a simulation study. Am Entomol 42:106–112Google Scholar
  160. Schumann H (1971) Die Gattung Lucilia (Goldfliegen). Merkbl Angew Parasitenkd Schädlingsbekämpf 18:1–20Google Scholar
  161. Schröder H, Klotzbach H, Elias S, Augustin C, Pueschel K (2003) Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Sci Int 132:76–81CrossRefPubMedGoogle Scholar
  162. Shean BSL, Messinger L, Papworth (1993) Observations of differential decomposition on sun exposed vs. shaded pig carrion in coastal Washington State. J Forensic Sci 38:938–949PubMedGoogle Scholar
  163. Sherman RA (2000) Wound myiasis in urban and suburban United States. Arch Intern Med 160:2004–2014CrossRefPubMedGoogle Scholar
  164. Shimko N, Liu L, Lang BF, Burger, G (2001) GOBASE: the organelle genome database. Nucleic Acids Res 29:128–132CrossRefPubMedGoogle Scholar
  165. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  166. Singh D, Bharti M (2001) Further observations on the nocturnal oviposition behaviour of blowflies (Diptera: Calliphoridae). Forensic Sci Int 120:124–126CrossRefPubMedGoogle Scholar
  167. Smith KE, Wall R (1997a) Asymmetric competition between larvae of the blowflies Calliphora vicina and Lucilia sericata in carrion. Ecol Entomol 22:467–474Google Scholar
  168. Smith KE, Wall R (1997b) The use of carrion as breeding sites by the blowfly Lucilia sericata and other Calliphoridae. Med Vet Entomol 11:38–44.PubMedGoogle Scholar
  169. Smith KGV (1986) A manual of forensic entomology. British Museum, LondonGoogle Scholar
  170. Sorg MH, Dearborn JH, Monahan EI, Ryan HF, Sweeney KG, David E (1997) Forensic taphonomy in marine contexts. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC, Boca Raton, Fla., pp 567–604Google Scholar
  171. Sperling FA, Anderson GS, Hickey DA (1994) A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 39:418–427PubMedGoogle Scholar
  172. Stafford F (1971) Insects of a medieval burial. Sci Anthropol 7:6–10Google Scholar
  173. Stevens JR, Wall R (1996) Species, sub-species and hybrid populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae). Proc R Soc Lond B 263:1335–1341PubMedGoogle Scholar
  174. Stevens JR, Wall R (2001) Genetic relationships between blowflies (Calliphoridae) of forensic importance. Forensic Sci Int 120:116–23CrossRefPubMedGoogle Scholar
  175. Stevens JR, Wall R, Wells JD (2002) Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol 11:141–148CrossRefPubMedGoogle Scholar
  176. Tessmer JW, Meek CL, Wright VL (1995) Circadian patterns of oviposition by necrophilous flies (Diptera: Calliphoridae). Southwest Entomol 24:439–445Google Scholar
  177. Tomberlin JK, Adler PH (1998) Seasonal colonization and decomposition of rat carrion in water and on land in an open field in South Carolina. J Med Entomol 35:704–709PubMedGoogle Scholar
  178. Tracqui A, Keyser-Tracqui C, Kintz P, Ludes B (2004) Entomotoxicology for the forensic toxicologist: much ado about nothing? Int J Legal Med:118Google Scholar
  179. Vance GM, VanDyk JK, Rowley WA (1995) A device for sampling aquatic insects associated with carrion in water. J Forensic Sci 40:479–482Google Scholar
  180. VanLaerhoven SL, Anderson GS (1999) Insect succession on buried carrion in two biogeoclimatic zones of British Columbia. J Forensic Sci 44:31–44Google Scholar
  181. Vincent S, Vian JM, Carlotti MP (2000) Partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. J Forensic Sci 45:820–823PubMedGoogle Scholar
  182. Vinogradova EB (1986) Geographic variation and ecological control of diapause in flies. In: Taylor F, Karban R (eds) The evolution of insect life-cycles. Springer, Berlin Heidelberg New York, pp 35–47Google Scholar
  183. Vinogradova EB (1991) Diapause in flies and its control (in Russian with English summary). Proc ZIN RAS 214, St. PetersburgGoogle Scholar
  184. Vinogradova EB, Marchenko MJ (1984) The use of temperature parameters of fly growth in the medicolegal practice. Sud-Med Ekspert 27:16–19Google Scholar
  185. Vinogradova EB, Zinovjeva KB (1972) Maternal induction of larval diapause in the blowfly Calliphora vicina. J Insect Physiol 18:2401–2409CrossRefPubMedGoogle Scholar
  186. Wall R, Fisher P (2001) Visual and olfactory cue interaction in resource-location by the blowfly, Lucilia sericata. Physiol Entomol 26:212–218CrossRefGoogle Scholar
  187. Wall R, Warnes ML (1994) Responses of the sheep blowfly Lucilia sericata to carrion odour and carbon dioxide. Entomol Exp Appl 73:239–246Google Scholar
  188. Wallman JF, Donnellan SC (2001) The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Sci Int 120:60–67CrossRefPubMedGoogle Scholar
  189. Watson EJ, Carlton CE (2003) Spring succession of necrophilous insects on wildlife carcasses in Louisiana. J Med Entomol 40:338–347PubMedGoogle Scholar
  190. Weismann A (1864) Die nachembryonale Entwicklung der Musciden nach Beobachtungen an Musca vomitoria und Sarcophaga carnaria. Z Wiss Zool 14:187–336Google Scholar
  191. Wells JD, King L (2001) Incidence of precocious egg development in flies of forensic importance (Calliphoridae). Pan-Pac Entomol 77:235–239Google Scholar
  192. Wells JD, LaMotte LR (1995) Estimating maggot age from weight using inverse prediction. J Forensic Sci 40:585–590Google Scholar
  193. Wells JD, Sperling FA (1999) Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae). J Med Entomol 36:222–226PubMedGoogle Scholar
  194. Wells JD, Sperling FA (2000) A DNA-based approach to the identification of insect species used for postmortem interval estimation and partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. J Forensic Sci 45:1358–1359Google Scholar
  195. Wells JD, Sperling FA (2001) DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Sci Int 120:110–115CrossRefPubMedGoogle Scholar
  196. Wells JD, Byrd JH, Tantawi TI (1999) Key to third-instar chrysomyinae (Diptera: Calliphoridae) from carrion in the continental United States. J Med Entomol 36:638–641PubMedGoogle Scholar
  197. Wells JD, Pape T, Sperling FAH (2001a) DNA based identification and molecular systematics of forensically important Sarcophagidae (Diptera). J Forensic Sci 46:87–91Google Scholar
  198. Wells JD, Introna F Jr, Di Vella G, Campobasso CP, Hayes J, Sperling FA (2001b) Human and insect mitochondrial DNA analysis from maggots. J Forensic Sci 46:685–687PubMedGoogle Scholar
  199. Whiting AR (1967) The biology of the parasitic wasp Mormoniella vitripennis (Walker). Q Rev Biol 42:333–406Google Scholar
  200. Wigglesworth VB (1972) The principles of insect physiology. Chapman and Hall, LondonGoogle Scholar
  201. Williams H (1984) A model for the aging of fly larvae in forensic entomology. Forensic Sci Int 25:191–199PubMedGoogle Scholar
  202. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedGoogle Scholar
  203. Yovanovich P (1888) Entomologie appliquée à la Médecine légale. Olliver-Henry, ParisGoogle Scholar
  204. Zehner R, Amendt J, Krettek R (2004a) STR typing of human DNA from fly larvae fed on decomposing bodies. J Forensic Sci (in press)Google Scholar
  205. Zehner R, Amendt J, Schütt S, Sauer S, Krettek R, Povolný D (2004b) Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). Int J Legal Med:118Google Scholar
  206. Zumpt F (1965) Myiasis in man and animals in the old world. Butterworths, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Zentrum der RechtsmedizinJ.W. Goethe-Universität FrankfurtGermany
  2. 2.FB 19, FG ÖkologieUniversität KasselKasselGermany

Personalised recommendations