, Volume 90, Issue 8, pp 337–344 | Cite as

Spin-charge separation in quasi one-dimensional organic conductors



Matter is excited by adding an electron or extracting one. These excitations can move in the bulk material almost like a free particle, carrying an electronic charge and spin. The electrons try to avoid each other by Coulomb repulsion and also interact magnetically. If they are confined to one dimension, charge and spin excitations are separated and move independently due to the strong interaction. The unique properties of one-dimensional systems are revealed in a number of experiments on strongly anisotropic materials. Here we review the theoretical models and the experimental indications for the unusual behavior of quasi one-dimensional organic conductors.



During the past few years, we have enjoyed collaborations and discussions with R. Claessen, L. Degiorgi, M. Dumm, A. Freimuth, G. Grüner, and J. Voit.


  1. Chow DS, Zamborszky F, Alavi B, Tantillo DJ, Baur A, Merlic CA, Brown SE (2000) Charge ordering in the TMTTF family of molecular conductors. Phys Rev Lett 85:1698–1701CrossRefPubMedGoogle Scholar
  2. Claessen R, Sing M, Schingenschlögl U, Blaha P, Dressel M, Jacobsen CS (2002) Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys Rev Lett 88:096401–1-4CrossRefPubMedGoogle Scholar
  3. Clay RT, Mazumdar S, Cambell DK (2003) Pattern of charge ordering in quasi-one-dimensional organic charge-transfer solids. Phys Rev B 67:115121–1-9CrossRefGoogle Scholar
  4. Dardel B, Malterre D, Grioni M, Weibel P, Baer Y, Voit J, Jérome D (1993) Possible observation of a Luttinger-liquid behaviour from photoemission spectroscopy of one-dimensional organic conductors. Europhys Lett 24:687–692Google Scholar
  5. Dressel M, Grüner G (2002) Electrodynamics of solids. Cambridge University Press, CambridgeGoogle Scholar
  6. Dressel M, Schwartz A, Grüner G, Degiorgi L (1996) Deviations from Drude response in low-dimensional metals: electrodynamics of the metallic state of (TMTSF)2 PF6. Phys Rev Lett 77:398–401CrossRefPubMedGoogle Scholar
  7. Dressel M, Kirchner S, Hesse P, Untereiner G, Dumm M, Hemberger J, Loidl A, Montgomery L (2001) Spin and charge dynamics in Bechgaard salts. Synth Metals 120:719–720CrossRefGoogle Scholar
  8. Dumm M, Loidl A, Fravel BW, Starkey KP, Montgomery L, Dressel M (2000) Electron-spin-resonance studies on the organic linear chain compounds (TMTCF) 2 X (C =S, Se and X =\( {{\rm{PF}}_{{\rm{6}}} } \), \( {{\rm{AsF}}_{{\rm{6}}} } \), \( {{\rm{ClO}}_{{\rm{4}}} } \), Br). Phys Rev B 61:511–520CrossRefGoogle Scholar
  9. Farges JP (ed) (1994) Organic conductors. Dekker, New YorkGoogle Scholar
  10. Giamarchi T (1991) Umklapp process and resistivity in one-dimensional fermion systems. Phys Rev B 33:2905–2913CrossRefGoogle Scholar
  11. Giamarchi T (1997) Mott transition in one dimension. Physica B 230–232:975–980Google Scholar
  12. Giamarchi T, Millis AJ (1992) Conductivity of a Luttinger liquid. Phys Rev B 46:9325–9331CrossRefGoogle Scholar
  13. Haldene FDM (1981) Luttiner liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J Phys C 14:2585–2609Google Scholar
  14. Ishiguro T, Yamaji K Saito G (1998) Organic superconductors, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Jérome D (1991) The physics of organic conductors. Science 252:1509–1514Google Scholar
  16. Jérome D, Schulz HJ (1982) Organic conductors and superconductors. Adv Phys 31:299–490Google Scholar
  17. Jérome D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a Synthetic Organic Conductors (TMTSF)2PF6. J Phys Lett 41:L95–98Google Scholar
  18. Landau LD (1957) The theory of a Fermi liquid. Sov Phys JETP 3:920–925Google Scholar
  19. Lorenz T, Hofmann M, Grüninger M, Freimuth A, Uhrig GS, Dumm M, Dressel M (2002) Evidence for spin-charge separation in quasi one-dimensional organic conductors. Nature 418:614–617CrossRefPubMedGoogle Scholar
  20. Luttinger JM (1963) An exactly solvable model of a many-fermion system. J Math Phys 4:1154–1162Google Scholar
  21. Monceau P (ed) (1985) Electronic properties of inorganic quasi-one-dimensional compounds, part I/II. Reidel, DordrechtGoogle Scholar
  22. Monceau P, Nad FY, Brazovskii S (2001) Ferroelectric Mott-Hubbard phase of organic (TMTTF) 2 X conductors. Phys Rev Lett 86:4080–4083CrossRefPubMedGoogle Scholar
  23. Moser J, Gabay M, Auban-Senzier P, Jérome D, Bechgaard K, Fabre JM (1998) Transverse transport in (TM) 2 X organic conductors: possible evidence for a Luttinger liquid. Eur Phys J B 1:39–46CrossRefGoogle Scholar
  24. Pines D, Nozières P (1966) The theory of quantum liquids, vol 1. Addison-Wesley, ReadingGoogle Scholar
  25. Schwartz A, Dressel M, Grüner G, Vescoli V, Degiorgi L, Giarmarchi T (1998) On-chain electrodynamics of metallic (TMTSF)2 X salts: observation of Tomonaga-Luttinger liquid response. Phys Rev B 58:1261–1271CrossRefGoogle Scholar
  26. Shibata Y, Nishimoto S, Ohta Y (2001) Charge ordering in the one-dimensional extended Hubbard model: implications to the TMTTF family of organic conductors. Phys Rev B 64:235107–1-5CrossRefGoogle Scholar
  27. Tomonaga S (1950) Remarks on Bloch's method of sound waves applied to many-fermion problems. Prog Theor Phys Kyoto 5:544–569Google Scholar
  28. Vescoli V, Degiorgi L, Henderson W, Grüner G, Starkey KP, Montgomery LK (1998) Dimensionality-driven insulator-to-metal transition in the Bechgaard salts. Science 281:1181−1184CrossRefPubMedGoogle Scholar
  29. Voit J (1995) One-dimensional Fermi liquids. Rep Prog Phys 58:977–1116CrossRefGoogle Scholar
  30. Wzietek P, Creuzet F, Bourbonnais C, Jérome D, Bechgaard K, Batail P (1993) Nuclear relaxation and electronic correlations in quasi-one-dimensional organic conductors. II. Experiments. J Phys I Paris 3:171–200Google Scholar
  31. Zamborszky F, Yu W, Raas W, Brown SE, Alavi B, Merlic CA, Baur A (2002) Competition and coexistence of bond and charge orders in (TMTTF)2 AsF6. Phys Rev B 66:081103–081106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.1. Physikalisches InstitutUniversität StuttgartStuttgartGermany

Personalised recommendations