, Volume 90, Issue 5, pp 212–219 | Cite as

Thermoregulation and ventilation of termite mounds

Review Article


Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.


  1. Badertscher S, Gerber C, Leuthold RH (1983) Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behav Ecol Sociobiol 12:115–119CrossRefGoogle Scholar
  2. Bölsche W (1931) Der Termitenstaat. Kosmos Gesellschaft der Naturfreunde, StuttgartGoogle Scholar
  3. Bonabeau E, Theraulaz G, Deneubourg JL, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12:188–193CrossRefPubMedGoogle Scholar
  4. Bonabeau E, Theraulaz G, Deneubourg JL, Franks NR (1998) A model for the emergence of pillars, walls and royal chambers in termite nests. Philos Trans R Soc Lond B 353:1561–1576CrossRefGoogle Scholar
  5. Bruinsma OH (1979) An analysis of building behaviour of the termite Macrotermes subhyalinus (Rambur). PhD thesis, Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  6. Camazine S, Deneubourg JL, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton, N.J.Google Scholar
  7. Collins NM (1979) The nest of Macrotermes bellicosus (Smeathman) from Mokwa, Nigeria. Insectes Soc 26:240–246CrossRefGoogle Scholar
  8. Collins NM (1981) Populations, age structure and survivorship of colonies of Macrotermes bellicosus (Isoptera: Macrotermitinae). J Anim Ecol 50:293–311CrossRefGoogle Scholar
  9. Darlington JPEC (1987) How termites keep their cool. Entomol Soc Queensl News Bull 15:45–46Google Scholar
  10. Darlington JPEC (1989) Ventilation systems in termite nests in Kenya. Sociobiology 15:263–264Google Scholar
  11. Darlington JPEC, Zimmerman PR, Wandiga SO (1992) Populations in nests of the termite Macrotermes jeanneli in Kenya. J Trop Ecol 8:73–85CrossRefGoogle Scholar
  12. Darlington JPEC, Zimmerman PR, Greenberg J, Westberg C (1997) Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. J Trop Ecol 13:491–510CrossRefGoogle Scholar
  13. Deneubourg JL (1977) Application de l'ordre par fluctuation à la description du nid chez les termites. Insectes Soc 24:117–130CrossRefGoogle Scholar
  14. Gerber C, Badertscher S, Leuthold RH (1988) Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc 35:226–240CrossRefGoogle Scholar
  15. Grassé PP (1959) La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d'interprétation du comportement des termites constructeurs. Insectes Soc 6:41–81CrossRefGoogle Scholar
  16. Grassé PP (1984) Réparation, reconstruction et remaniements internes du nid. Coordination de tâches individuelles et comportement stigmergique. La déterminisme du comportement constructeur. In: Grassé PP (ed) Termitologia, Tome II: Fondation des sociétés – construction. Masson, Paris, pp 490–577Google Scholar
  17. Grassé PP, Noirot C (1961) Nouvelles recherches sur la systématique et l'éthologie des termites champignonnistes du genre Bellicositermes Emerson. Insectes Soc 8:311–359CrossRefGoogle Scholar
  18. Hansell MH (1984) Animal architecture and building behaviour. Longman, LondonGoogle Scholar
  19. Heinrich B (1993) The hot-blooded insects. Harvard University Press, Cambridge, Mass.Google Scholar
  20. Jones RJ (1979) Expansion of the nest of Nasutitermes costalis. Insectes Soc 26:322–342CrossRefGoogle Scholar
  21. Jones RJ (1980) Gallery construction by Nasutitermes costalis: polyethism and the behaviour of individuals. Insectes Soc 27:5–28CrossRefGoogle Scholar
  22. Korb J (1997) Lokale und regionale Verbreitung von Macrotermes bellicosus (Isoptera; Macrotermitinae): Stochastik oder Deterministik? Wissenschaft & Technik Verlag, BerlinGoogle Scholar
  23. Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65–71Google Scholar
  24. Korb J, Linsenmair KE (1998a) The effects of temperature on the architecture and distribution of Macrotermes bellicosus (Isoptera: Macrotermitinae) mounds in different habitats of a West African Guinea savanna. Insectes Soc 45:51–65CrossRefGoogle Scholar
  25. Korb J, Linsenmair KE (1998b) The structure of Macrotermes bellicosus (Isoptera; Macrotermitinae) mounds: what role does microclimate and thermoregulation play? Insectes Soc 45:335–342CrossRefGoogle Scholar
  26. Korb J, Linsenmair KE (1999a) The architecture of termite mounds, a result of a trade-off between thermoregulation and gas exchange? Behav Ecol 10:312–316CrossRefGoogle Scholar
  27. Korb J, Linsenmair KE (1999b) Reproductive success of Macrotermes bellicosus (Isoptera, Macrotermitinae) in two neighbouring habitats. Oecologia 118:183–191CrossRefGoogle Scholar
  28. Korb J, Linsenmair KE (2000a) Thermoregulation of termite mounds: what role does ambient temperature and metabolism of the colony play? Insectes Soc 47:357–363CrossRefGoogle Scholar
  29. Korb J, Linsenmair KE (2000b) Ventilation of termite mounds: new results require a new model. Behav Ecol 11:486–494CrossRefGoogle Scholar
  30. Korb J, Linsenmair KE (2001) The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies. Oecologia 127:324–333CrossRefGoogle Scholar
  31. Lepage M (1984) Distribution, density and evolution of Macrotermes bellicosus nests (Isoptera: Macrotermitinae) in the north-east of Ivory Coast. J Anim Ecol 53:107–117CrossRefGoogle Scholar
  32. Loos R (1964) A sensitive anemometer and its use for the measurement of air currents in the nest of Macrotermes natalensis. In: Bouillon A (ed) Études sur les termites Africains. Masson, Paris, pp 364–373Google Scholar
  33. Lüscher M (1955) Der Sauerstoffverbrauch bei Termiten und die Ventilation des Nestes bei Macrotermes natalensis (Haviland). Acta Trop 12:289–307Google Scholar
  34. Lüscher M (1956) Die Lufterneuerung im Nest der Termite Macrotermes natalensis (Haviland). Insectes Soc 3:273–276CrossRefGoogle Scholar
  35. Lüscher M (1961) Air-conditioned termite nests. Sci Am 205:138–145CrossRefGoogle Scholar
  36. Matsumoto T (1978) Population density, biomass, nitrogen and carbon content, energy value and respiration rate of four species of termites in Pasoh Forest Reserve. Malay Nat J 30:335–351Google Scholar
  37. McComie LD, Dhanarajan G (1990) Respiratory rate and energy utilization by Macrotermes carbonarius Hagen (Isoptera, Termitidae, Macrotermitidae) in Penang, Malaysia. Insect Sci Appl 11:197–204Google Scholar
  38. Noirot C (1970) The nests of termites. In: Krishna K, Weesner FM (eds) Biology of termites II. Academic Press, New York, pp 311–350Google Scholar
  39. Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 121–139Google Scholar
  40. O'Toole DV, Robinson PA, Myerscough MR (1999) Self-organized criticality in termite architecture: a role for crowding in ensuring ordered nest expansion. J Theor Biol 198:305–327CrossRefPubMedGoogle Scholar
  41. Ruelle JE (1964) L'architecture du nid de Macrotermes natalensis et son sens fonctionnel. In: Bouillon A (ed) Études sur les termites Africains. Masson, Paris, pp 327–364Google Scholar
  42. Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM (eds) Biology of termites I. Academic Press, New York, pp 495–524Google Scholar
  43. Schuurman G, Dangerfield JM (1996) Mound dimensions, internal structure and potential colony size in the fungus growing termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Sociobiology 27:29–38Google Scholar
  44. Smeathman H (1781) Some account of the termites which are found in Africa and other hot climates. Philos Trans R Soc Lond 71:139–192CrossRefGoogle Scholar
  45. Theraulaz G, Bonabeau E, Deneubourg JL (1999) The mechanisms and rules of coordinated building in social insects. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhäuser, Basel, pp 309–330Google Scholar
  46. Thomas RJ (1987) Factors effecting the distribution and activity of fungi in the nests of Macrotermitinae (Isoptera). Soil Biol Biochem 19:343–349CrossRefGoogle Scholar
  47. Traniello JFA (1981) Enemy deterrence in the recruitment strategy of a termite: soldier-organized foraging in Nasutitermes costalis. Proc Natl Acad Sci USA 78:1976–1979CrossRefPubMedCentralPubMedGoogle Scholar
  48. Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 141–168Google Scholar
  49. Turner JS (2000) Architecture and morphogenesis in the mound of Macrotermes michaelseni (Sjöstedt) (Isoptera: Termitidae, Macrotermitinae) in northern Namibia. Cimbebasia 16:143–175Google Scholar
  50. Turner JS (2001) On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange. Physiol Biochem Zool 74:798–822CrossRefPubMedGoogle Scholar
  51. Weir JS (1973) Air flow, evaporation and mineral accumulation in mounds of Macrotermes subhyalinus (Rambur). J Anim Ecol 42:509–520CrossRefGoogle Scholar
  52. Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect–fungus interactions. Academic Press, London, pp 69–92Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Biologie IUniversity of RegensburgRegensburgGermany

Personalised recommendations