Advertisement

Der Unfallchirurg

, Volume 122, Issue 12, pp 917–924 | Cite as

Primäre (idiopathische) Schultersteife

Definition, Krankheitsverlauf, Epidemiologie und Ätiologie
  • Jonas PogorzelskiEmail author
  • Andreas B. Imhoff
  • Hannes Degenhardt
  • Sebastian Siebenlist
Leitthema

Zusammenfassung

Das charakteristische Merkmal der Schultersteife ist die Einschränkung der aktiven und passiven Beweglichkeit des Glenohumeralgelenks. Ursächlich sind letztendlich eine Fibrosierung und die daraus resultierende Kontraktur der glenohumeralen Gelenkkapselstrukturen. Der Begriff „Schultersteife“ ist jedoch nur ein beschreibender Überbegriff, der zwingend weiterführend definiert werden muss, da sowohl der Krankheitsverlauf als auch die zu empfehlende Therapie entscheidend von der Ursache der Schultersteife beeinflusst werden. Die primäre Schultersteife, auch idiopathische Schultersteife oder „frozen shoulder“ genannt, muss von verschiedenen Formen der sekundären Schultersteifen unterschieden werden und verläuft häufig in 3 Stadien: der initialen „freezing phase“, der darauf folgenden „frozen phase“ und letztendlich der „thawing phase“, die alle jeweils mehrere Monate bis hin zu Jahre andauern können. Obwohl die primäre Schultersteife mit einer Prävalenz von 2–5 % in der Normalbevölkerung eine häufige pathologische Veränderung darstellt, ist die genaue Ätiologie bisher weitgehend unbekannt. Es besteht jedoch Konsensus in der Literatur, dass gewisse systemische Erkrankungen wie beispielsweise ein Diabetes mellitus mit dem vermehrten Auftreten einer primären Schultersteife assoziiert sind.

Schlüsselwörter

Schultergelenk „Frozen shoulder“ Bewegungsradius, artikulär Adhäsive Kapsulitis Diabetes mellitus 

Primary (idiopathic) shoulder stiffness

Definition, disease progression, epidemiology and etiology

Abstract

Shoulder stiffness is characterized by restriction of the active and passive movement of the glenohumeral joint. The stiffness is ultimately caused by fibrosis and the resulting contracture of the glenohumeral joint capsule and its ligaments; however, the term stiff shoulder is only a descriptive umbrella term that must be further defined as the course of the disease and the recommended treatment are decisively influenced by the cause of the shoulder stiffness. Primary shoulder stiffness, also known as idiopathic shoulder stiffness or “frozen shoulder”, must be distinguished from various forms of secondary shoulder stiffness and often occurs in three stages, which can all last for several months to years: the initial “freezing phase”, followed by a “frozen phase” and finally a “thawing phase”. Although primary shoulder stiffness is a frequent pathological alteration with an prevalence of 2–5% in the general population, the exact etiology remains largely unknown; however, there is consensus throughout the literature that certain systemic pathologies, such as diabetes mellitus are associated with a higher incidence of primary shoulder stiffness.

Keywords

Shoulder joint Frozen shoulder Range of motion, articular Adhesive capsulitis Diabetes mellitus 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Pogorzelski, A.B. Imhoff, H. Degenhardt und S. Siebenlist geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Akbar M, Mclean M, Garcia-Melchor E et al (2019) Fibroblast activation and inflammation in frozen shoulder. PLoS ONE 14:e215301PubMedPubMedCentralGoogle Scholar
  2. 2.
    Arpaci D, Karakece E, Tocoglu AG et al (2016) Endocan, TGF-beta, and ADMA as risk factors for endothelial dysfunction and possible vascular disease in patients with subclinical hypothyroidism. Ann Clin Lab Sci 46:601–607PubMedGoogle Scholar
  3. 3.
    Binder AI, Bulgen DY, Hazleman BL et al (1984) Frozen shoulder: a long-term prospective study. Ann Rheum Dis 43:361–364PubMedPubMedCentralGoogle Scholar
  4. 4.
    Binder AI, Bulgen DY, Hazleman BL et al (1984) Frozen shoulder: an arthrographic and radionuclear scan assessment. Ann Rheum Dis 43:365–369PubMedPubMedCentralGoogle Scholar
  5. 5.
    Blonna D, Fissore F, Bellato E et al (2017) Subclinical hypothyroidism and diabetes as risk factors for postoperative stiff shoulder. Knee Surg Sports Traumatol Arthrosc 25:2208–2216PubMedGoogle Scholar
  6. 6.
    Braga M, Bhasin S, Jasuja R et al (2012) Testosterone inhibits transforming growth factor-beta signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action. Mol Cell Endocrinol 350:39–52PubMedGoogle Scholar
  7. 7.
    Bridgman JF (1972) Periarthritis of the shoulder and diabetes mellitus. Ann Rheum Dis 31:69–71PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bulgen DY, Hazleman BL, Voak D (1976) HLA-B27 and frozen shoulder. Lancet 1:1042–1044PubMedGoogle Scholar
  9. 9.
    Bunker TD, Anthony PP (1995) The pathology of frozen shoulder. A Dupuytren-like disease. J Bone Joint Surg 77:677–683Google Scholar
  10. 10.
    Bunker TD, Esler CN (1995) Frozen shoulder and lipids. J Bone Joint Surg Br 77:684–686PubMedGoogle Scholar
  11. 11.
    Bunker TD, Reilly J, Baird KS et al (2000) Expression of growth factors, cytokines and matrix metalloproteinases in frozen shoulder. J Bone Joint Surg Br 82:768–773PubMedGoogle Scholar
  12. 12.
    Cakir M, Samanci N, Balci N et al (2003) Musculoskeletal manifestations in patients with thyroid disease. Clin Endocrinol (Oxf) 59:162–167Google Scholar
  13. 13.
    Cao J, Sato H, Takino T et al (1995) The C‑terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for pro-gelatinase A activation. J Biol Chem 270:801–805PubMedGoogle Scholar
  14. 14.
    Chen L, Deng H, Cui H et al (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218PubMedPubMedCentralGoogle Scholar
  15. 15.
    Codman EA (1934) The shoulder; rupture of the supraspinatus tendon and other lesions in or about the subacromial bursa. T. Todd Company, BostonGoogle Scholar
  16. 16.
    De Ponti A, Vigano MG, Taverna E et al (2006) Adhesive capsulitis of the shoulder in human immunodeficiency virus-positive patients during highly active antiretroviral therapy. J Shoulder Elbow Surg 15:188–190PubMedGoogle Scholar
  17. 17.
    De Witte S, Bonnet F, Bonarek M et al (2002) Adhesive capsulitis of the shoulder in an HIV patient treated with nelfinavir. AIDS 16:1307–1308PubMedGoogle Scholar
  18. 18.
    Duplay ES (1872) De la periarthritis scapulohumerale et des radieurs de l’epaule quien son la consequence. Arch Gen Med 20:513–542Google Scholar
  19. 19.
    Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15:635–645PubMedPubMedCentralGoogle Scholar
  20. 20.
    Grasland A, Ziza JM, Raguin G et al (2000) Adhesive capsulitis of shoulder and treatment with protease inhibitors in patients with human immunodeficiency virus infection: report of 8 cases. J Rheumatol 27:2642–2646PubMedGoogle Scholar
  21. 21.
    Hakim AJ, Cherkas LF, Spector TD et al (2003) Genetic associations between frozen shoulder and tennis elbow: a female twin study. Rheumatology (Oxf) 42:739–742Google Scholar
  22. 22.
    Hand GCR, Carr AJ (2005) Natural history and genetics of frozen shoulder a 1–20 year follow up of 273 patients. Orthop Proc 87-B:161–161Google Scholar
  23. 23.
    Hand GC, Athanasou NA, Matthews T et al (2007) The pathology of frozen shoulder. J Bone Joint Surg Br 89:928–932PubMedGoogle Scholar
  24. 24.
    Huang SW, Lin JW, Wang WT et al (2014) Hyperthyroidism is a risk factor for developing adhesive capsulitis of the shoulder: a nationwide longitudinal population-based study. Sci Rep 4:4183PubMedPubMedCentralGoogle Scholar
  25. 25.
    Hutchinson JW, Tierney GM, Parsons SL et al (1998) Dupuytren’s disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J Bone Joint Surg Br 80:907–908PubMedGoogle Scholar
  26. 26.
    Iams WT, Hames ML, Tsai JP et al (2015) Increased serum tumor necrosis factor alpha levels in patients with lenalidomide-induced hypothyroidism. Exp Hematol 43:74–78PubMedGoogle Scholar
  27. 27.
    Itoi E, Arce G, Bain GI et al (2016) Shoulder stiffness: current concepts and concerns. Arthroscopy 32:1402–1414Google Scholar
  28. 28.
    Kabbabe B, Ramkumar S, Richardson M (2010) Cytogenetic analysis of the pathology of frozen shoulder. Int J Shoulder Surg 4:75–78PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kanbe K, Inoue K, Inoue Y et al (2009) Inducement of mitogen-activated protein kinases in frozen shoulders. J Orthop Sci 14:56–61PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kanter JE, Kramer F, Barnhart S et al (2012) Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proceedings of the National Academy of Sciences of the United States of America 109:E715–724Google Scholar
  31. 31.
    Kaviratne M, Hesse M, Leusink M et al (2004) IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol 173(0):4020–4029PubMedGoogle Scholar
  32. 32.
    Kendrick JI (1940) The treatment of periarthritis of the shoulder. Med Clin North Am 24:525–532Google Scholar
  33. 33.
    Kilian O, Kriegsmann J, Berghauser K et al (2001) The frozen shoulder. Arthroscopy, histological findings and transmission electron microscopy imaging. Chirurg 72:1303–1308PubMedGoogle Scholar
  34. 34.
    Kingston K, Curry EJ, Galvin JW et al (2018) Shoulder adhesive capsulitis: epidemiology and predictors of surgery. J Shoulder Elbow Surg 27:1437–1443PubMedGoogle Scholar
  35. 35.
    Klapp R (1916) Die operative Erweiterung der Schultergelenkkapsel. Eine Methode zur blutigen Mobilisiemng von Schultersteifigkeiten. Zbl Chir 43:137–140Google Scholar
  36. 36.
    Kobayashi T, Karasuno H, Sano H et al (2019) Representative survey of frozen shoulder questionnaire responses from the Japan Shoulder Society: What are the appropriate diagnostic terms for primary idiopathic frozen shoulder, stiff shoulder or frozen shoulder? J Orthop Sci.  https://doi.org/10.1016/j.jos.2018.12.012 CrossRefPubMedGoogle Scholar
  37. 37.
    Li W, Lu N, Xu H et al (2015) Case control study of risk factors for frozen shoulder in China. Int J Rheum Dis 18:508–513PubMedGoogle Scholar
  38. 38.
    Lundberg BJ (1969) The frozen shoulder. Clinical and radiographical observations. The effect of manipulation under general anesthesia. Structure and glycosaminoglycan content of the joint capsule. Local bone metabolism. Acta Orthop Scand Supplementum 119:1–59Google Scholar
  39. 39.
    Macnab I (1973) Rotator cuff tendinitis. Ann R Coll Surg Engl 53:271–287PubMedPubMedCentralGoogle Scholar
  40. 40.
    Marx RG, Malizia RW, Kenter K et al (2007) Intra-articular corticosteroid injection for the treatment of idiopathic adhesive capsulitis of the shoulder. Hss J 3:202–207PubMedPubMedCentralGoogle Scholar
  41. 41.
    Milgrom C, Novack V, Weil Y et al (2008) Risk factors for idiopathic frozen shoulder. Isr Med Assoc J 10:361–364PubMedGoogle Scholar
  42. 42.
    Nago M, Mitsui Y, Gotoh M et al (2010) Hyaluronan modulates cell proliferation and mRNA expression of adhesion-related procollagens and cytokines in glenohumeral synovial/capsular fibroblasts in adhesive capsulitis. J Orthop Res 28:726–731PubMedGoogle Scholar
  43. 43.
    Neviaser AS, Hannafin JA (2010) Adhesive capsulitis: a review of current treatment. Am J Sports Med 38:2346–2356Google Scholar
  44. 44.
    Neviaser JS (1945) Adhesive capsulitis of the shoulder: a study of the pathological findings in periarthritis of the shoulder. JBJS 27:211–222Google Scholar
  45. 45.
    Neviaser JS (1962) Arthrography of the shoulder joint: study of the findings in adhesive capsulitis of the shoulder. Study of the findings in adhesive capsulitis of the shoulder. J Bone Joint Surg 44-a:1321–1359PubMedGoogle Scholar
  46. 46.
    Neviaser TJ (1987) Adhesive capsulitis. Orthop Clin North Am 18:439–443PubMedGoogle Scholar
  47. 47.
    Nguyen MT, Favelyukis S, Nguyen AK et al (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292PubMedGoogle Scholar
  48. 48.
    Noy S, Dekel S, Orgad S et al (1981) HLA-B27 and frozen shoulder. Tissue Antigens 17:251PubMedGoogle Scholar
  49. 49.
    Pasteur F (1932) La teno-bursite bicipitale. J Deradial et d’Electrol 16:419Google Scholar
  50. 50.
    Patel K, Patel N, Curtis M (2012) Bilateral simultaneous frozen shoulder: a possible adverse event of the FOLFOX chemotherapy regime? Shoulder Elbow 4:193–195Google Scholar
  51. 51.
    Peyriere H, Mauboussin JM, Rouanet I et al (1999) Frozen shoulder in HIV patients treated with indinavir: report of three cases. AIDS 13:2305–2306PubMedGoogle Scholar
  52. 52.
    Prodromidis AD, Charalambous CP (2016) Is there a genetic predisposition to frozen shoulder? A systematic review and meta-analysis. JBJS Rev.  https://doi.org/10.2106/jbjs.Rvw.O.00007 CrossRefPubMedGoogle Scholar
  53. 53.
    Qiao YC, Chen YL, Pan YH et al (2017) Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy: a PRISMA-compliant systematic review and meta-analysis. Medicine 96:e6583PubMedPubMedCentralGoogle Scholar
  54. 54.
    Reeves B (1975) The natural history of the frozen shoulder syndrome. Scand J Rheumatol 4:193–196PubMedGoogle Scholar
  55. 55.
    Rizk TE, Pinals RS (1984) Histocompatibility type and racial incidence in frozen shoulder. Arch Phys Med Rehabil 65:33–34PubMedGoogle Scholar
  56. 56.
    Rodeo SA, Hannafin JA, Tom J et al (1997) Immunolocalization of cytokines and their receptors in adhesive capsulitis of the shoulder. J Orthop Res 15:427–436PubMedGoogle Scholar
  57. 57.
    Sattar MA, Luqman WA (1985) Periarthritis: another duration-related complication of diabetes mellitus. Diabetes Care 8:507–510PubMedGoogle Scholar
  58. 58.
    Schiefer M, Teixeira PFS, Fontenelle C et al (2017) Prevalence of hypothyroidism in patients with frozen shoulder. J Shoulder Elbow Surg 26:49–55PubMedGoogle Scholar
  59. 59.
    Schultheis A, Reichwein F, Nebelung W (2008) Frozen shoulder. Diagnosis and therapy. Orthopäde 37:1065–1066 (1068–1072)Google Scholar
  60. 60.
    Seignalet J, Sany J, Caillens JP et al (1981) Lack of association between HLA-B27 and frozen shoulder. Tissue Antigens 18:364PubMedGoogle Scholar
  61. 61.
    Smith SP, Devaraj VS, Bunker TD (2001) The association between frozen shoulder and Dupuytren’s disease. J Shoulder Elbow Surg 10:149–151PubMedGoogle Scholar
  62. 62.
    Spite M, Claria J, Serhan CN (2014) Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab 19:21–36PubMedGoogle Scholar
  63. 63.
    Sugimoto R, Enjoji M, Nakamuta M et al (2005) Effect of IL-4 and IL-13 on collagen production in cultured LI90 human hepatic stellate cells. Liver Int 25:420–428PubMedGoogle Scholar
  64. 64.
    Sung CM, Jung TS, Park HB (2014) Are serum lipids involved in primary frozen shoulder? A case-control study. J Bone Joint Surg 96:1828–1833PubMedGoogle Scholar
  65. 65.
    Tighe CB, Oakley WS Jr. (2008) The prevalence of a diabetic condition and adhesive capsulitis of the shoulder. South Med J 101:591–595PubMedGoogle Scholar
  66. 66.
    Uhthoff HK, Boileau P (2007) Primary frozen shoulder: global capsular stiffness versus localized contracture. Clin Orthop Relat Res 456:79–84PubMedGoogle Scholar
  67. 67.
    Uitvlugt G, Detrisac DA, Johnson LL et al (1993) Arthroscopic observations before and after manipulation of frozen shoulder. Arthroscopy 9:181–185PubMedGoogle Scholar
  68. 68.
    Vicenti G, Moretti L, De Giorgi S et al (2016) Thyroid and shoulder diseases: the bases of a linked channel. J Biol Regul Homeost Agents 30:867–870PubMedGoogle Scholar
  69. 69.
    Wang K, Ho V, Hunter-Smith DJ et al (2013) Risk factors in idiopathic adhesive capsulitis: a case control study. J Shoulder Elbow Surg 22:e24–e29PubMedGoogle Scholar
  70. 70.
    Welty FK, Alfaddagh A, Elajami TK (2016) Targeting inflammation in metabolic syndrome. Transl Res 167:257–280PubMedGoogle Scholar
  71. 71.
    White D, Choi H, Peloquin C et al (2011) Secular trend of adhesive capsulitis. Arthritis Care Res 63:1571–1575Google Scholar
  72. 72.
    Wiley AM (1991) Arthroscopic appearance of frozen shoulder. Arthroscopy 7:138–143PubMedGoogle Scholar
  73. 73.
    Wohlgethan JR (1987) Frozen shoulder in hyperthyroidism. Arthritis Rheum 30:936–939PubMedGoogle Scholar
  74. 74.
    Zabraniecki L, Doub A, Mularczyk M et al (1998) Frozen shoulder: a new delayed complication of protease inhibitor therapy? Rev Rhum Engl Ed 65:72–74PubMedGoogle Scholar
  75. 75.
    Zreik NH, Malik RA, Charalambous CP (2016) Adhesive capsulitis of the shoulder and diabetes: a meta-analysis of prevalence. Muscles Ligaments Tendons J 6(1):26–34PubMedPubMedCentralGoogle Scholar
  76. 76.
    Zuckerman JD, Rokito A (2011) Frozen shoulder: a consensus definition. J Shoulder Elbow Surg 20:322–325PubMedGoogle Scholar
  77. 77.
    Zwaal P, Van De Laar S (2014) Management of the frozen shoulder. Orthop Res Rev 6:81Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Jonas Pogorzelski
    • 1
    Email author
  • Andreas B. Imhoff
    • 1
  • Hannes Degenhardt
    • 1
  • Sebastian Siebenlist
    • 1
  1. 1.Abteilung und Poliklinik für SportorthopädieKlinikum rechts der Isar, Technische Universität MünchenMünchenDeutschland

Personalised recommendations