Advertisement

Der Unfallchirurg

, Volume 122, Issue 1, pp 59–75 | Cite as

Femurschaftfraktur

  • T. GöslingEmail author
  • C. Krettek
CME

Zusammenfassung

Femurschaftfrakturen nach Wachstumsabschluss betreffen überwiegend junge Menschen mit einem gesunden Knochen. Ursächlich sind meist Hochrasanzunfälle im Straßenverkehr, Quetsch- oder Überrollmechanismen und Stürze aus großer Höhe. Schussverletzungen sind in Deutschland eher selten, haben jedoch international oder in der Wehrmedizin eine gewisse Bedeutung. Sowohl lokale als auch andere Regionen betreffende Begleitverletzungen sind häufig. Die vorherrschenden Frakturtypen sind Quer‑, Keil‑, Segment- und Trümmerfrakturen. Spiralfrakturen sind ein Zeichen indirekter Gewalt und daher häufig bei älteren Patienten mit Osteoporose zu finden. Eine neue Entität stellen die atypischen Femurfrakturen unter oder nach Bisphosphonattherapie dar. Diese treten typischerweise subtrochantär auf und beginnen auf der lateralen Knochenseite. Auf die Besonderheit von pathologischen Frakturen, der Femurschaftfraktur im Kindes- und Jugendalter sowie periprothetischen Frakturen wird im vorliegenden Beitrag nicht eingegangen.

Schlüsselwörter

Femurschaftfraktur Polytrauma Verriegelungsnagelung Damage control orthopaedics Fixateur externe 

Femoral shaft fractures

Abstract

Femoral shaft fractures after completion of growth predominantly affect young people with healthy bones. The causes are mostly high-velocity traffic accidents, crushing or running over mechanisms and falls from a great height. Gunshot wounds are relatively rare in Germany but have a certain importance internationally and in military medicine. Accompanying injuries in local or other regions are frequent. The predominant fracture types are transverse, wedge, segment and comminuted fractures. Spiral fractures are a sign of indirect force and are therefore frequently found in older patients with osteoporosis. Atypical fractures under or following bisphosphonate treatment are a new entity, which are typically subtrochanteric and begin on the lateral side of the bone. The characteristics of pathological fractures, femoral shaft fractures in childhood and adolescence as well as periprosthetic fractures are not dealt with in this article.

Keywords

Femur shaft fracture Polytrauma Intramedulary nailing Damage control orthopaedics External fixation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Gösling und C. Krettek geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    von Lübken F, Achatz G, Friemert B, Mauser M, Franke A, Kollig E, Bieler D (2018) Update zu Schussverletzungen der Extremitäten. Unfallchirurg 121(1):59–72 (Jan)CrossRefGoogle Scholar
  2. 2.
    Starr J, Tay YKD, Shane E (2018) Current understanding of epidemiology, pathophysiology, and management of atypical femur fractures. Curr Osteoporos Rep 16(4):519–529CrossRefGoogle Scholar
  3. 3.
    Krettek C, Miclau T, Grün O, Schandelmaier P, Tscherne H (1998) Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury 29(Suppl 3):C29–C39CrossRefGoogle Scholar
  4. 4.
    Decker S, Suero EM, Hawi N, Müller CW, Krettek C, Citak M (2013) The physiological range of femoral antetorsion. Skeletal Radiol 42:1501–1505CrossRefGoogle Scholar
  5. 5.
    De Campos J, Vangsness CT Jr, Merritt PO, Sher J (1994) Ipsilateral knee injury with femoral fracture. Examination under anesthesia and arthroscopic evaluation. Clin Orthop 300:178–182Google Scholar
  6. 6.
    Lieurance R, Benjamin JB, Rappaport WD (1992) Blood loss and transfusion in patients with isolated femur fractures. J Orthop Trauma 6:175–179CrossRefGoogle Scholar
  7. 7.
    Mithofer K, Lhowe DW, Vrahas MS, Altman DT, Altman GT (2004) Clinical spectrum of acute compartment syndrome of the thigh and its relation to associated injuries. Clin Orthop 425:223–229CrossRefGoogle Scholar
  8. 8.
    Kellam JF, Meinberg EG, Agel J, Karam MD, Roberts CS (2018) Introduction: fracture and dislocation classification compendium-2018: international comprehensive classification of fractures and dislocations committee. J Orthop Trauma 32(Suppl 1):S1–S10CrossRefGoogle Scholar
  9. 9.
    Bone LB, Johnson KD, Weigelt J, Scheinberg R (1989) Early versus delayed stabilization of femoral fractures. A prospective randomized study. J Bone Joint Surg Am 71:336–340CrossRefGoogle Scholar
  10. 10.
    Johnson KD, Cadambi A, Seibert GB (1985) Incidence of adult respiratory distress syndrome in patients with multiple musculoskeletal injuries: Effect of early operative stabilization of fractures. J Trauma 25:375–384CrossRefGoogle Scholar
  11. 11.
    Giannoudis PV, Smith RM, Bellamy MC et al (1999) Stimulation of the inflammatory system by reamed and unreamed nailing of femoral fractures: an analysis of the second hit. J Bone Joint Surg Br 81:356–361CrossRefGoogle Scholar
  12. 12.
    Pape HC, Hildebrand F, Pertschy S, Zelle B, Garapati R, Grimme K, Krettek C, Reed RL (2002) Changes in the management of femoral shaft fractures in polytrauma patients: from early total care to damage control orthopedic surgery. J Trauma 53:452–461CrossRefGoogle Scholar
  13. 13.
    Pape HC, Rixen D, Morley J et al (2007) Impact of the method of initial stabilization for femoral shaft fractures in patients with multiple injuries at risk for complications (borderline patients). Ann Surg 246:491–499CrossRefGoogle Scholar
  14. 14.
    Bezabeh B, Wamisho BL, Coles MJ (2012) Treatment of adult femoral shaft fractures using the perkins traction at addis ababa tikur anbessa university hospital: the ethiopian experience. Int Surg 97:78–85CrossRefGoogle Scholar
  15. 15.
    Charash WE, Fabian TC, Croce MA (1994) Delayed surgical fixation of femur fractures is a risk factor for pulmonary failure independent of thoracic trauma. J Trauma 37:667–672CrossRefGoogle Scholar
  16. 16.
    Alonso J, Geissler W, Hughes JL (1989) External fixation of femoral fractures. Indications and limitations. Clin Orthop 241:83–88Google Scholar
  17. 17.
    Bonnevialle P, Mansat P, Cariven P, Bonnevialle N, Ayel J, Mansat M (2005) La fixation externe monoplan dans les fractures récentes du fémur. Rev Chir Orthop Reparatrice Appar Mot 91:446–456CrossRefGoogle Scholar
  18. 18.
    Rüedi TP, Lüscher JN (1979) Results after internal fixation of comminuted fractures of the femoral shaft with DC plates. Clin Orthop 38:74–76Google Scholar
  19. 19.
    Magerl F, Wyss A, Brunner CH, Binder W (1979) Plate osteosynthesis of femoral shaft fractures in adults—a follow-up study. Clin Orthop 138:62–73Google Scholar
  20. 20.
    Geissler WB, Powell TE, Blickenstaff KR, Savoie FH (1995) Compression plating of acute femoral shaft fractures. Orthopedics 18:655–660PubMedGoogle Scholar
  21. 21.
    Apivatthakakul T, Chiewcharntanakit S (2009) Minimally invasive plate osteosynthesis (MIPO) in the treatment of the femoral shaft fracture where intramedullary nailing is not indicated. Int Orthop 33:1119–1126CrossRefGoogle Scholar
  22. 22.
    Angelini AJ, Livani B, Flierl MA, Morgan SJ, Belangero WD (2010) Less invasive percutaneous wave plating of simple femur shaft fractures: a prospective series. Injury 41:624–628CrossRefGoogle Scholar
  23. 23.
    Wolinsky PR, McCarty E, Shyr Y, Johnson K (1999) Reamed intramedullary nailing of the femur: 551 cases. J Trauma 46:392–339CrossRefGoogle Scholar
  24. 24.
    Tornetta P III, Tiburzi D (1997) The treatment of femoral shaft fractures using intramedullary interlocked nails with and without intramedullary reaming: a preliminary report. J Orthop Trauma 11:89–92CrossRefGoogle Scholar
  25. 25.
    Canadian Orthopaedic Trauma Society (2003) Nonunion following intramedullary nailing of the femur with and without reaming. Results of a multicenter randomized clinical trial. J Bone Joint Surg Am 85-A:2093–2096CrossRefGoogle Scholar
  26. 26.
    Herscovici D Jr, Ricci WM, McAndrews P, DiPasquale T, Sanders R (2000) Treatment of femoral shaft fracture using unreamed interlocked nails. J Orthop Trauma 14:10–14CrossRefGoogle Scholar
  27. 27.
    Saleeb H, Tosounidis T, Papakostidis C, Giannoudis PV (2018) Incidence of deep infection, union and malunion for open diaphyseal femoral shaft fractures treated with IM nailing: A systematic review. Surgeon.  https://doi.org/10.1016/j.surge.2018.08.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Hierholzer C, Friederichs J, Augat P, Woltmann A, Trapp O, Bühren V, von Rüden C (2018) Entwicklung und Prinzipien der Verriegelungsmarknagelung. Unfallchirurg 121(3):239–255CrossRefGoogle Scholar
  29. 29.
    Gösling T, Giannoudis PV (2014) Femoral shaft fractures. In: Browner BD, Jupiter J, Krettek C, Anderson PA (Hrsg) Skeletal trauma. Elsevier, Philadelphia, S 1787–1822Google Scholar
  30. 30.
    Brinker MR, Cook SD, Dunlap JN, Christakis P, Elliott MN (1999) Early changes in nutrient artery blood flow following tibial nailing with and without reaming: a preliminary study. J Orthop Trauma 13:129–133CrossRefGoogle Scholar
  31. 31.
    Giannoudis PV, Pountos I, Morley J, Perry S, Tarkin HI, Pape HC (2008) Growth factor release following femoral nailing. Bone 42:751–757CrossRefGoogle Scholar
  32. 32.
    Kalbas Y, Qiao Z, Horst K, Teuben M, Tolba RH, Hildebrand F, Pape HC, Pfeifer R, TREAT Research Group (2018) Early local microcirculation is improved after intramedullary nailing in comparison to external fixation in a porcine model with a femur fracture. Eur J Trauma Emerg Surg 44:689–696CrossRefGoogle Scholar
  33. 33.
    Gösling T, Krettek C (2012) Femurschaft. In: Haas NP, Krettek C (Hrsg) Tscherne Unfallchirurgie – Hüfte und Oberschenkel. Springer, Berlin Heidelberg, S 239–318CrossRefGoogle Scholar
  34. 34.
    Krettek C, Miclau T, Schandelmaier P, Stephan C, Mohlmann U, Tscherne H (1999) The mechanical effect of blocking screws („Poller screws“) in stabilizing tibia fractures with short proximal or distal fragments after insertion of smalldiameter intramedullary nails. J Orthop Trauma 13:550–553CrossRefGoogle Scholar
  35. 35.
    Georgiadis GM, Minster GJ, Moed BR (1990) Effects of dynamization after interlocking tibial nailing: an experimental study in dogs. J Orthop Trauma 4:323–330CrossRefGoogle Scholar
  36. 36.
    Wolinsky P, Tejwani N, Richmond JH, Koval KJ, Egol K, Stephen DJ (2002) Controversies in intramedullary nailing of femoral shaft fractures. Instr Course Lect 51:291–303PubMedGoogle Scholar
  37. 37.
    Hussain N, Hussain FN, Sermer C, Kamdar H, Schemitsch EH, Sternheim A, Kuzyk P (2017) Antegrade versus retrograde nailing techniques and trochanteric versus piriformis intramedullary nailing entry points for femoral shaft fractures: a systematic review and meta-analysis. Can J Surg 60:19–29PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ricci WM, Bellabarba C, Evanoff B, Herscovici D, DiPasquale T, Sanders R (2001) Retrograde versus antegrade nailing of femoral shaft fractures. J Orthop Trauma 15:161–169CrossRefGoogle Scholar
  39. 39.
    Alho A (1997) Concurrent ipsilateral fractures of the hip and shaft of the femur. A systematic review of 722 cases. Ann Chir Gynaecol 86:326–336PubMedGoogle Scholar
  40. 40.
    Stephen DJ, Kreder HJ, Schemitsch EH, Conlan LB, Wild L, McKee MD (2002) Femoral intramedullary nailing: comparison of fracture-table and manual traction. a prospective, randomized study. J Bone Joint Surg Am 84-A:1514–1521CrossRefGoogle Scholar
  41. 41.
    Jaarsma RL, Pakvis DF, Verdonschot N, Biert J, van Kampen A (2004) Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma 18:403–409CrossRefGoogle Scholar
  42. 42.
    Dagneaux L, Allal R, Pithioux M, Chabrand P, Ollivier M, Argenson JN (2018) Femoral malrotation from diaphyseal fractures results in changes in patellofemoral alignment and higher patellofemoral stress from a finite element model study. Knee 25:807–813CrossRefGoogle Scholar
  43. 43.
    Gosling T, Hufner T, Hankemeier S, Zelle BA, Muller-Heine A, Krettek C (2004) Femoral nail removal should be restricted in asymptomatic patients. Clin Orthop 423:222–226CrossRefGoogle Scholar
  44. 44.
    Gosling T, Hufner T, Westphal R, Faulstich J, Hankemeier S, Wahl F, Krettek C (2006) Overdistraction of the fracture eases reduction in delayed femoral nailing: results of intraoperative force measurements. J Trauma 61:900–904CrossRefGoogle Scholar
  45. 45.
    Harwood PJ, Giannoudis PV, Probst C, Krettek C, Pape HC (2006) The risk of local infective complications after damage control procedures for femoral shaft fracture. J Orthop Trauma 20:181–189PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Unfallchirurgie und Orthopädische ChirurgieStädtisches Klinikum Braunschweig gGmbHBraunschweigDeutschland
  2. 2.Klinik für UnfallchirurgieMedizinische Hochschule Hannover (MHH)HannoverDeutschland

Personalised recommendations