Advertisement

Der Unfallchirurg

, Volume 120, Issue 7, pp 573–584 | Cite as

„Beyond antibiotic therapy“ – Zukünftige antiinfektiöse Strategien – Update 2017

  • D. Vogt
  • S. Sperling
  • T. Tkhilaishvili
  • A. Trampuz
  • J.-P. Pirnay
  • C. WillyEmail author
Leitthema

Zusammenfassung

Hintergrund

Die wichtigsten Säulen der Therapie von „surgical site infections“ (SSI) sind heute die chirurgische Sanierung und die lokale bzw. systemische Antibiotikatherapie. Dennoch ist v. a. infolge der zunehmenden Antibiotikaresistenzen das Interesse für mögliche Ergänzungen der Therapie von großer Bedeutung für die zukünftige Unfallchirurgie und Orthopädie.

Methode

Vor dem Hintergrund eigener experimenteller bzw. klinischer Erfahrungen und auf der Basis der aktuellen Literatur wurden mögliche, zukünftig ggf. wichtige antiinfektiöse Strategien erarbeitet.

Ergebnisse/Schlussfolgerungen

Bakteriophagen, vor ca. einem Jahrhundert entdeckt und klinisch verwendet, werden seit ca. einem Jahrzehnt auch im westeuropäischen Raum eingesetzt, derzeit v. a. bei Brandverletzten. Es ist vorstellbar, dass Phagenpräparate angesichts der zunehmenden Antibiotikamultiresistenz von hoher Bedeutung sein werden. Sie werden jedoch nicht zu einem reinen Ersatz für Antibiotika werden. Vielmehr wird es zielführend sein, eine Kombination von Bakteriophagen und Antibiotika als interagierende Gesamttherapie einzusetzen. Ebenso nimmt die klinische Bedeutung antimikrobieller Peptide (AMPs) zu. Bislang wird vorwiegend experimentell am möglichen Einsatz von AMPs gearbeitet. Einzelne AMPs sind jedoch bereits in der Therapie etabliert (Colistin). Weitere diagnostische und therapeutische Maßnahmen werden sich durch den möglichen Einsatz der photodynamischen Therapie, der UV-Licht-Applikation und durch die differenzierte Analyse des Genoms sowie der individuellen Stoffwechsellage (Metabolom) von Erregerzelle und Patientengewebe ergeben.

Schlüsselwörter

Antibiotikaresistenz Bakteriophagen Antimikrobielle Peptide Photodynamische Therapie Postoperative Wundinfektionen 

Beyond antibiotic therapy – Future antiinfective strategies – Update 2017

Abstract

Background

The key elements in the therapy of surgical site infections (SSI) are surgical debridement and local and systemic antibiotic therapy; however, due to increasing antibiotic resistance, the development of additional therapeutic measures is of great interest for future trauma and orthopedic surgery.

Method

Against the background of our own experimental and clinical experiences and on the basis of the current literature, possible future anti-infective strategies were elaborated.

Results/conclusions

Bacteriophages were discovered and clinically implemented approximately one century ago and have been used in Western Europe for about one decade. They are currently used mainly in patients with burn injuries. It is likely that bacteriophages will become of great importance in view of the increasing antibiotic multi-drug resistance; however, they will probably not entirely replace antibiotic drugs. A combined use of bacteriophages and antibiotics is likely to be a more reasonable efficient therapy. In addition, the clinical importance of antimicrobial peptides (AMP) also increases. Up to now the possible use of AMPs is still experimental; however, individual AMPs are already established in the routine therapy (e. g. colistin). Further diagnostic and therapeutic measures may include photodynamic therapy, ultraviolet (UV) light application and differentiated genome analysis as well as the individual metabolism situation (metabolomics) of the pathogen cell and the patient tissue.

Keywords

Antibiotic resistance Bacteriophages Antimicrobial peptides Photodynamic therapy Surgical site infections 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D. Vogt, S. Sperling, T. Tkhilaishvili, A. Trampuz, J.-P. Pirnay, und C. Willy geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Al-Ahmad A, Walankiewicz A, Hellwig E, Follo M, Tennert C, Wittmer A et al (2016) Photoinactivation using visible light plus water-filtered infrared-A (vis+wIRA) and chlorine e6 (Ce6) eradicates planktonic periodontal pathogens and subgingival biofilms. Front Microbiol 7:1900CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aleem NA, Aslam M, Zahid MF, Rahman AJ, Rehman FU (2013) Treatment of burn wound infection using ultraviolet light: a case report. J Am Coll Clin Wound Spec 5(1):19–22CrossRefPubMedGoogle Scholar
  4. 4.
    Andersson M, Boman A, Boman HG (2003) Ascaris nematodes from pig and human make three antibacterial peptides: isolation of cecropin P1 and two ASABF peptides. Cell Mol Life Sci 60(3):599–606CrossRefPubMedGoogle Scholar
  5. 5.
    Andes D, Craig W, Nielsen LA, Kristensen HH (2009) In vivo pharmacodynamic characterization of a novel plectasin antibiotic, NZ2114, in a murine infection model. Antimicrob Agents Chemother 53(7):3003–3009CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6(12):1543–1575CrossRefGoogle Scholar
  7. 7.
    Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1(1):31–45CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    d’Herelle F (1925) Essai de traitement de la peste bubonique par le bacteriophage. Press Médicale 33:1393–1394Google Scholar
  9. 9.
    d’Herelle F (1928) Le cholera asiatique. Press Méd 61:961–964Google Scholar
  10. 10.
    Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42(1):38–44CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Daptomycin 98-01 and 99-01 Investigators., Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI et al (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38(12):1673–1681CrossRefGoogle Scholar
  12. 12.
    Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15(21):2377–2392CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Freire F, Ferraresi C, Jorge AO, Hamblin MR (2016) Photodynamic therapy of oral Candida infection in a mouse model. J Photochem Photobiol B 159:161–168CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Friman VP, Soanes-Brown D, Sierocinski P, Molin S, Johansen HK, Merabishvili M et al (2016) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29(1):188–198CrossRefPubMedGoogle Scholar
  15. 15.
    Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54(1):397–404CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta A, Bansal N, Houston B (2012) Metabolomics of urinary tract infection: a new uroscope in town. Expert Rev Mol Diagn 12(4):361–369CrossRefPubMedGoogle Scholar
  17. 17.
    Gupta S, Sharma AK, Jaiswal SK, Sharma VK (2016) Prediction of biofilm inhibiting peptides: an in silico approach. Front Microbiol 7:949PubMedPubMedCentralGoogle Scholar
  18. 18.
    Habets MG, Brockhurst MA (2012) Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett 8(3):416–418CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hall KK, Giannetta ET, Getchell-White SI, Durbin LJ, Farr BM (2003) Ultraviolet light disinfection of hospital water for preventing nosocomial Legionella infection: a 13-year follow-up. Infect Control Hosp Epidemiol 24(8):580–583CrossRefPubMedGoogle Scholar
  20. 20.
    Hashimoto MC, Prates RA, Kato IT, Nunez SC, Courrol LC, Ribeiro MS (2012) Antimicrobial photodynamic therapy on drug-resistant pseudomonas aeruginosa-induced infection. An in vivo study. Photochem Photobiol 88(3):590–595CrossRefPubMedGoogle Scholar
  21. 21.
    Häusler T (2006) Viruses vs. superbugs: a solution to the antibiotics crisis ? Palgrave Macmillan, BasingstokeCrossRefGoogle Scholar
  22. 22.
    Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14(11–12):536–540CrossRefPubMedGoogle Scholar
  23. 23.
    Kaur S, Harjai K, Chhibber S (2014) Bacteriophage mediated killing of staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLOS ONE 9(3):e90411CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock RE, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31(36):9519–9526CrossRefPubMedGoogle Scholar
  25. 25.
    Kazemzadeh-Narbat M, Lai BF, Ding C, Kizhakkedathu JN, Hancock RE, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34(24):5969–5977CrossRefPubMedGoogle Scholar
  26. 26.
    Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595CrossRefPubMedGoogle Scholar
  27. 27.
    Lam CW, Law CY, Sze KH, To KK (2015) Quantitative metabolomics of urine for rapid etiological diagnosis of urinary tract infection: evaluation of a microbial-mammalian co-metabolite as a diagnostic biomarker. Clin Chim Acta 438:24–28CrossRefPubMedGoogle Scholar
  28. 28.
    Lang G, Kehr P, Mathevon H, Clavert JM, Sejourne P, Pointu J (1979) Bacteriophage therapy of septic complications of orthopaedic surgery (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 65(1):33–37PubMedGoogle Scholar
  29. 29.
    Laverty G, Gorman SP, Gilmore BF (2011) The potential of antimicrobial peptides as biocides. Int J Mol Sci 12(10):6566–6596CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee JY, Boman A, Sun CX, Andersson M, Jornvall H, Mutt V et al (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci U S A 86(23):9159–9162CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Levin J, Riley LS, Parrish C, English D, Ahn S (2013) The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. Am J Infect Control 41(8):746–748CrossRefPubMedGoogle Scholar
  32. 32.
    Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ma M, Kazemzadeh-Narbat M, Hui Y, Lu S, Ding C, Chen DD et al (2012) Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J Biomed Mater Res A 100(2):278–285CrossRefPubMedGoogle Scholar
  34. 34.
    Maisetta G, Grassi L, Di Luca M, Bombardelli S, Medici C, Brancatisano FL et al (2016) Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters. Biofouling 32(7):787–800CrossRefPubMedGoogle Scholar
  35. 35.
    Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6(5):468–472CrossRefPubMedGoogle Scholar
  36. 36.
    Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLOS ONE 4(3):e4944CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Meurice E, Rguiti E, Brutel A, Hornez JC, Leriche A, Descamps M et al (2012) New antibacterial microporous CaP materials loaded with phages for prophylactic treatment in bone surgery. J Mater Sci Mater Med 23(10):2445–2452CrossRefPubMedGoogle Scholar
  38. 38.
    Napier BA, Band V, Burd EM, Weiss DS (2014) Colistin heteroresistance in enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme. Antimicrob Agents Chemother 58(9):5594–5597CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nawrocki KL, Crispell EK, McBride SM (2014) Antimicrobial peptide resistance mechanisms of gram-positive bacteria. Antibiotics (Basel) 3(4):461–492CrossRefGoogle Scholar
  40. 40.
    Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32(2):143–171CrossRefPubMedGoogle Scholar
  41. 41.
    Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G et al (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l‑lysine. J Exp Med 193(9):1067–1076CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Reddy KVR, Yedery RD (2004) Aranha C Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547CrossRefPubMedGoogle Scholar
  43. 43.
    Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6):237–238 (240–233)CrossRefPubMedGoogle Scholar
  44. 44.
    Rhode C, Sikorski J (2011) Bakeriophagen: Vielfalt, Anwendung und ihre Bedeutung für die Wissenschaft vom Leben. Naturwiss Rundsch 64(1):5–14Google Scholar
  45. 45.
  46. 46.
    Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R et al (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4(2):66–73PubMedPubMedCentralGoogle Scholar
  47. 47.
    Schröder J‑M (2010) Antimikrobielle Peptide – Körpereigene Antibiotika schützen Haut und Schleimhaut [Journal]. Pharmazeutische Zeitung online. http://www.pharmazeutische-zeitung.de/index.php?id=33508. Zugegriffen: 17. Mai 2017Google Scholar
  48. 48.
    Schröder JM (2010) Pharmazeutische Zeitung online 16. http://www.pharmazeutische-zeitung.de/index.php?id=33508. Zugegriffen: 17. Mai 2017Google Scholar
  49. 49.
    Simonetti O, Cirioni O, Orlando F, Alongi C, Lucarini G, Silvestri C et al (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of staphylococcus aureus wound infection. Br J Dermatol 164(5):987–995CrossRefPubMedGoogle Scholar
  50. 50.
    Stauss-Grabo M, Atiye S, Le T, Kretschmar M (2014) Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and Candida spp. Pharmazie 69(11):838–841PubMedGoogle Scholar
  51. 51.
    Sulakvelidze A, Alavidze Z, Morris JG Jr. (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tait K, Skillman LC, Sutherland IW (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311CrossRefGoogle Scholar
  53. 53.
    Tsulukidze A (1941) Experience of the use of bacteriophages in conditions of war trauma. Gruzmedgiz, TbilisiGoogle Scholar
  54. 54.
    Vianna PG, Dale Jr. CR, Simmons S, Stibich M, Licitra CM (2016) Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital. Am J Infect Control 44(3):299–303Google Scholar
  55. 55.
    Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42(Database issue):D1154–D1158CrossRefPubMedGoogle Scholar
  56. 56.
    Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S, Harper DR, Parracho HMRT (2014) Bacteriophages and Biofilms. Antibiotics (Basel) 3(3):270–284CrossRefGoogle Scholar
  57. 57.
    Wang C, Huang S, Zhu T, Sun X, Zou Y, Wang Y (2014) Efficacy of photodynamic antimicrobial therapy for wound flora and wound healing of pressure sore with pathogen infection. Zhonghua Yi Xue Za Zhi 94(31):2455–2459PubMedGoogle Scholar
  58. 58.
    Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5(1):226–235CrossRefPubMedGoogle Scholar
  59. 59.
    Xiong M, Chen M, Zhang J (2016) Rational evolution of antimicrobial peptides containing unnatural amino acids to combat burn wound infections. Chem Biol Drug Des 88(3):404–410CrossRefPubMedGoogle Scholar
  60. 60.
    Xu Y, Maltesen RG, Larsen LH, Schonheyder HC, Le VQ, Nielsen JL et al (2016) In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 16:80CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am 95(2):117–125CrossRefPubMedGoogle Scholar
  62. 62.
    Zapotoczna M, Forde E, Hogan S, Humphreys H, O’Gara JP, Fitzgerald-Hughes D et al (2017) Eradication of staphylococcus aureus biofilm infections using synthetic antimicrobial peptides. J Infect Dis 215(6):975–983CrossRefPubMedGoogle Scholar
  63. 63.
    Zheng W, Antonini JM, Lin YC, Roberts JR, Kashon ML, Castranova V et al (2015) Cardiovascular effects in rats after intratracheal instillation of metal welding particles. Inhal Toxicol 27(1):45–53CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhong G, Cheng J, Liang ZC, Xu L, Lou W, Bao C et al (2017) Short synthetic beta-sheet antimicrobial peptides for the treatment of multidrug-resistant pseudomonas aeruginosa burn wound infections. Adv Healthc Mater. doi: 10.1002/adhm.201601134 Google Scholar
  65. 65.
    Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351(16):1645–1654CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • D. Vogt
    • 1
  • S. Sperling
    • 2
  • T. Tkhilaishvili
    • 3
  • A. Trampuz
    • 3
  • J.-P. Pirnay
    • 4
  • C. Willy
    • 1
    Email author
  1. 1.Klinik für Unfallchirurgie, Orthopädie, septisch-rekonstruktive Chirurgie, Forschungs- und Behandlungszentrum septische DefektwundenBundeswehrkrankenhaus BerlinBerlinDeutschland
  2. 2.Klinik für Allgemein- und ViszeralchirurgieBundeswehrkrankenhaus BerlinBerlinDeutschland
  3. 3.Abteilung Septische Chirurgie, Centrum für Muskuloskeletale ChirurgieCharité – Universitätsmedizin BerlinBerlinDeutschland
  4. 4.Laboratory for Molecular and Cellular TechnologyQueen Astrid Military HospitalBrüsselBelgien

Personalised recommendations