Advertisement

Der Unfallchirurg

, Volume 119, Issue 11, pp 967–972 | Cite as

Unkritischer Gebrauch von Tranexamsäure bei Traumapatienten

Do no further harm!
  • M. MaegeleEmail author
In der Diskussion

Zusammenfassung

Auf Grundlage der CRASH-2-Studie wird das Antifibrinolytikum Tranexamsäure (TXA) zum frühen Einsatz bei Traumapatienten mit Blutung oder Risiko für eine signifikante Blutung empfohlen und viele Traumazentren und prähospitale Rettungssysteme haben diese Praxis in ihre Behandlungsalgorithmen aufgenommen. Die Schwächen der CRASH-2-Studie sind bekannt und Nachfolgeuntersuchungen konnten die positiven Effekte dieser Studie mitunter nicht reproduzieren. Der genaue Wirkmechanismus von TXA im Traumakontext ist nach wie vor unklar und substanzielle Wissenslücken im Umgang mit TXA beim Trauma sind beschrieben. Komponentenanalysen belegen inzwischen unterschiedliche Phänotypen der akuten traumatischen Gerinnungsstörung und aktuelle Daten zeigen, dass möglicherweise der häufigste Phänotyp der Fibrinolyse nach schwerem Trauma bei Schockraumaufnahme nicht, wie ursprünglich angenommen, die Hyperfibrinolyse ist, sondern die als sogenanntes „Shutdown“ bezeichnete Hypofibrinolyse (64 %). Viskoelastische Testverfahren (z. B. ROTEM®) bieten aktuell die beste Möglichkeit, den in der Akutphase vorliegenden Phänotyp der Fibrinolysestörung zu erfassen, und könnten möglicherweise die selektive und gezieltere Gabe von TXA unterstützen.

Schlüsselwörter

Trauma Fibrinolyse „Shutdown“ Tranexamsäure ROTEM 

Uncritical use of tranexamic acid in trauma patients

Do no further harm!

Abstract

Based upon the results of CRASH-2, early administration of antifibrinolytic tranexamic acid (TXA) is recommended in bleeding trauma patients or trauma patients presumed to bleed. Many trauma centers and emergency medical services have adopted this practice into their routine algorithms. The pitfalls of CRASH-2 have been discussed in the literature, but the positive effects could sometimes not be reproduced in follow-up studies. The mechanism of action of TXA in trauma is still not clear and major knowledge gaps with TXA in the context of trauma have been identified. Component analyses have indicated different phenotypes of fibrinolytic disturbances after trauma upon emergency department admission with fibrinolytic “shutdown” potentially representing the most prominent and frequent phenotype (64 %). Viscoelastic tests, e. g. ROTEM®, are currently the best method to assess fibrinolytic phenotype in the acute phase and may support more selective TXA administration and therapies in trauma.

Keywords

Trauma Fibrinolysis “Shutdown” Tranexamic acid ROTEM 

Notes

Interessenkonflikt

M. Maegele erhielt Honorare für Beratertätigkeiten von Astra Zeneca, TEM International, CSL Behring, Bayer und LFB France. Ihm wurden Teilnahmegebühren für Kongresse sowie Reise- und Übernachtungskosten erstattet. Er erhielt Honorare für Vorträge auf wissenschaftlichen Tagungen und Gelder für von ihm initiierte Forschungsvorhaben von LFB France und CSL Behring.

Literatur

  1. 1.
    Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Spahn DR (2016) The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 20:100CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rappold JF, Pusateri AE (2013) Tranexamic acid in remote damage control resuscitation. Transfusion 53(Suppl 1):96 S–99 SCrossRefPubMedGoogle Scholar
  3. 3.
    Vu E, Schlamp R, Wand R, Kleine-Deters G, Vu M, Tallon J (2013) Prehospital use of tranexamic acid for hemorrhagic shock in primary and secondary air medical evacuation. Air Med J 32(5):289–299CrossRefPubMedGoogle Scholar
  4. 4.
    Lipski A, Abramovich A, Nadler R, Feinstein U, Shaked G, Kreiss Y, Glassberg E (2014) Tranexamic acid in the prehospital setting: Israel Defense Forces initial experience. Injury 45(1):66–70CrossRefGoogle Scholar
  5. 5.
    Nadler R, Gendler S, Benov A, Strugo R, Abramovich A, Glassberg E (2014) Tranexamic acid at the point of injury: The Israeli combined civilian and military experience. J Trauma Acute Care Surg 77(3 Suppl 2):S146–S150CrossRefPubMedGoogle Scholar
  6. 6.
    Mrochuk M, ÓDochartaigh D, Chang E (2015) Rural trauma patients cannot wait: Tranexamic acid administration by helicopter emergency medical services. Air Med J 34(1):37–39CrossRefPubMedGoogle Scholar
  7. 7.
    Ausset S, Glassberg E, Nadler R, Sunde G, Cap AP, Hoffmann C, Plang S, Sailliol A (2015) Tranexamic acid as part of remote damage-control resuscitation in the prehospital setting: A critical appraisal of the medical literature and available alternatives. J Trauma Acute Care Surg 78(6 Suppl 1):S70–S75CrossRefPubMedGoogle Scholar
  8. 8.
    Paudyal P, Smith J, Robinson M, South A, Higginson I, Reuben A, Shaffee J, Black S, Logan S (2015) Tranexamic acid in major trauma: Inplementation and evaluation across South West England. Eur J Emerg Med. doi: 10.1097/mej.0000000000000323 PubMedGoogle Scholar
  9. 9.
    CRASH-2 collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, Gando S, Guyatt G, Hunt B, Morales C, Perel P, Prieto-Merino D, Woolley T (2011) The importance of early treatment with tranexamic acid in bleeding trauma patients: An exploratory analysis of the CRASH-2 randomised controlled trial. Lancet 377(9771):1096–1101CrossRefGoogle Scholar
  10. 10.
    Morrison J, Dubosse J, Rasmussen T, Midwinter M (2012) Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg 147(2):113–119CrossRefPubMedGoogle Scholar
  11. 11.
    Morrison J, Ross J, Dubosse J, Jansen J, Midwater M, Rasmussen T (2013) Association of cryoprecipitate and transexamic acid with improved survival following wartime injury: Findings from the MATTERs II study. JAMA Surg 148(3):218–225CrossRefPubMedGoogle Scholar
  12. 12.
    Cole E, Davenport R, Willet K, Brohi K (2015) Tranexamic acid use in severely injured civilian patients and the effects on outcomes: A prospective cohort study. Ann Surg 262(2):390–394CrossRefGoogle Scholar
  13. 13.
    Valle E, Allen C, Van Haren R, Jouria J, Li H, Livingstone A, Namias N, Schulman C, Proctor K (2014) Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg 76(6):1373–1378CrossRefPubMedGoogle Scholar
  14. 14.
    Harvin J, Peirce C, Mims M, Hudson J, Podbielski J, Wade C, Holcomb J, Cotton B (2015) The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg 78(5):905–909CrossRefPubMedGoogle Scholar
  15. 15.
    Wafaisade A, Lefering R, Bouillon B, Böhmer AB, Gäßler M, Rupopert M, TraumaRegister DGU (2016) Prehospital administration of tranexamic acid in trauma patients. Crit Care 20(1):143CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schöchl H, Wade CE, Holcomb JB, Matijevic N (2012) Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg 73(2):365–370CrossRefPubMedGoogle Scholar
  17. 17.
    Schöchl H, Voelckel W, Maegele M, Solomon C (2012) Trauma-associated hyperfibrinolysis. Hamostaseologie 32(1):22–27CrossRefPubMedGoogle Scholar
  18. 18.
    Ives C, Inaba K, Branco BC, Okoye O, Schochl H, Talving P, Lam L, Shulman I, Nelson J, Demetriades D (2012) Hyperfibrinolysis elicited via thromboelastography predicts mortality in trauma. J Am Col Surg 215(4):496–502CrossRefGoogle Scholar
  19. 19.
    Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, Biffl WL, Burlew CC, Johnson JL, Sauaia A (2010) Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg 252(3):434–442PubMedGoogle Scholar
  20. 20.
    Chapman MP, Moore EE, Moore HB, Gonzalez E, Morton AP, Chandler J, Fleming CD, Ghasabyan A, Silliman CC, Banerjee A, Sauaia A (2015) The “Death Diamond”: Rapid thrombelastography identifies lethal hyperfibrinolysis. J Trauma Acute Care Surg 79(6):925–929CrossRefPubMedGoogle Scholar
  21. 21.
    Schöchl H, Frietsch T, Pavelka M, Jámbor C (2009) Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 67(1):125–131CrossRefPubMedGoogle Scholar
  22. 22.
    Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, Khan S, De’Ath HD, Allard S, Hart DP, Pasi KJ, Hunt BJ, Stanworth S, MacCallum PK, Brohi K (2013) The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost 11(2):307–314CrossRefPubMedGoogle Scholar
  23. 23.
    CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, El-Sayed H, Gogichaishvili T, Gupta S, Herrera J, Hunt B, Iribhogbe P, Izurieta M, Khamis H, Komolafe E, Marrero MA, Mejía-Mantilla J, Miranda J, Morales C, Olaomi O, Olldashi F, Perel P, Peto R, Ramana PV, Ravi RR, Yutthakasemsunt S (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): A randomised, placebo-controlled trial. Lancet 376(9734):23–32CrossRefGoogle Scholar
  24. 24.
    Garg J, Pinnamaneni S, Aronow WS, Ahmad H (2014) ST elevation myocardial infarction after tranexamic acid: First reported case in the United States. Am J Ther 21(6):e221–e224CrossRefPubMedGoogle Scholar
  25. 25.
    Pusateri AE, Weiskopf RB, Bebarta V, Butler F, Cestero RF, Chaudry IH, Deal V, Dorlac WC, Gerhardt RT, Given MB, Hansen DR, Hoots WK, Klein HG, Macdonald VW, Mattox KL, Michael RA, Mogford J, Montcalm-Smith EA, Niemeyer DM, Prusaczyk WK, Rappold JF, Rassmussen T, Rentas F, Ross J, Thompson C, Tucker LD, US DoD Hemorrhage and Resuscitation Research and Development Steering Committee (2013) Tranexamic acid and trauma: Current status and knowledge gaps with recommended research priorities. Shock 9(2):121–126CrossRefGoogle Scholar
  26. 26.
    Moore E, Moore H, Gonzales E, Sauaia A, Banerjee A, Slliman C (2016) Rationale for the selective administration of transexamic acid to inhibit fibrinolysis in the severely injured patient. Transfusion 56:S110–S118CrossRefPubMedGoogle Scholar
  27. 27.
    Weber C, Görlinger K, Byhahn C, Moritz A, Hanke A, Zacharowski K, Meininger D (2011) Tranexamic acid partially improves platelet function in patients treated with dual antiplatelet therapy. Eur J Anaesthesiol 28(1):57–62CrossRefPubMedGoogle Scholar
  28. 28.
    Mengistu A, Röhm K, Boldt J, Mayer J, Suttner S, Piper S (2008) The influence of aprotinin and tranexamic acid on platelet function and postoperative blood loss in cardiac surgery. Anest Analg 107(2):391–397CrossRefGoogle Scholar
  29. 29.
    Chin TL, Moore EE, Moore HB, Gonzalez E, Chapman MP, Stringham JR, Ramos CR, Banerjee A, Sauaia A (2014) A principal component analysis of postinjury viscoelastic assays: clotting factor depletion versus fibrinolysis. Surgery 156(3):570–577CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kutcher ME, Ferguson AR, Cohen MJ (2013) A principal component analysis of coagulation after trauma. J Trauma Acute Care Surg 74(5):1223–1229CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, Banerjee A, Sauaia A (2014) Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: The spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg 77(6):811–817CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Moore H, Moore E, Liras I, Gonzales E, Harvin J, Holcomb J, Sauaia A, Cotton B (2016) Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: A multicnter evaluation of 2,540 severely injured patients. J Am Coll Surg. doi: 10.1016/j.jamcollsurg.2016.01.006 Google Scholar
  33. 33.
    Chapman M, Moore E, Moore H, Gonzales E, Chin T, Gamboni F, Mitra S, Banerjee A (2014) Massive Plasminogen Activator Inhibitor-1 (PAI-1) upregulation and suppressed fibrinolysis is the predominant phenotype in severely injured trauma patients. J Am Coll Surg 219(3 (Suppl)):S46CrossRefGoogle Scholar
  34. 34.
    Gonzales E, Moore E, Moore H, Pieracci F, Chin T, Chapman M, Quinn B, Sauaia A, Silliman CC, Banerjee A (2014) Is fibrinolysis shutdown the missing link leading to post-injury hypercualolability? J Am Coll Surg 219(3 (Suppl)):S47CrossRefGoogle Scholar
  35. 35.
    Yukizawa Y, Inaba Y, Watanabe S, Yajima S, Kobayashi N, Ishida T, Iwamoto N, Choe H, Saito T (2012) Association between venous thromboembolism and plasma levels of both soluble fibrin and plasminogen-activator inhibitor 1 in 170 patients undergoing total hip athroplasty. Acta Orthop 83(1):14–21CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mellbring G, Dahlgren S, Wiman B (1985) Plasma fibrinolytic activity in patients undergoing major abdominal surgery. Acta Chir Scand 151(2):109–114PubMedGoogle Scholar
  37. 37.
    Hayakawa M, Sawamura A, Gando S, Jesmin S, Naito S, Icko M (2012) A low TAFI activity and insufficient activation of fibrinolysis by both plasmin and neurtophil elastase promote organ dysfunction in disseminated intravascular coagulation associated with sepsis. Thromb Res 130(6):906–913CrossRefPubMedGoogle Scholar
  38. 38.
    Kluft C, Verheijen J, Jie A, Rijken D, Preston F, Sue-Ling H, Jespersen J, Aasen A (1985) The postoperative fibrinolytic shutdown: A rapidly reverting acute phase pattern for the fast-acting inhibitor of tissue-type plasminogen activator after trauma. Scand J Clin Lab Invest 45(7):605–610CrossRefPubMedGoogle Scholar
  39. 39.
    Kassis J, Hirsh J, Podor T (1992) Evidence that postoperative fibrinolytic shutdown is mediated by plasma factors that stimulate endothelial cell type I plasminogen activator inhibitor biosynthesis. Blood 80(7):1758–1764PubMedGoogle Scholar
  40. 40.
    Moore H, Moore E, Lawson P, Gonzales E, Fragoso M, Morton A, Gamboni F, Chapman M, Sauaia A, Banerjee A, Silliman CC (2015) Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock. Surgery 158(2):386–392CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schöchl H, Cadamuro J, Seidl S, Franz A, Solomon C, Schlimp C, Ziegler B (2013) Hyperfibrinolysis is common in out-of-hospital cardiac arrest: results from a prospective observational study. Resuscitation 84(4):454–459CrossRefPubMedGoogle Scholar
  42. 42.
    Kutcher ME, Cripps MW, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Redick BJ, Nelson MF, Cohen MJ (2012) Criteria for empiric treatment of hyperfibrinolysis after trauma. J Trauma Acute Care Surg 73(1):87–93CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Moore E, Moore H, Gonzales E, Chapman M, Hansen K, Sauaia A, Silliman CC, Banerjee A (2015) Postinjury fibrinolysis shutdown; Rationale for selective tranexamic acid. J Trauma Acute Care Surg 78(6 Suppl 1):S65–S69CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Neapolitano L, Cohen M, Cotton B, Schreiber M, Moore E (2013) Tranexamic acid in trauma: How should we use it? J Trauma Acute Care Surg 74(6):1575–1586CrossRefGoogle Scholar
  45. 45.
    Chapman M, Moore E, Ramos C, Ghasabyan A, Harr J, Chin T, Stringham J, Sauaia A, Silliman CC, Banerjee A (2013) Fibrinolysis greater than 3 % is the critical value for the initiation of antifibrinolytic therapy. J Trauma Acute Care Surg 75(6):961–967CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Larsen OH, Fenger-Eriksen C, Christiansen K, Ingerslev J, Sørensen B (2011) Diagnostic performance and therapeutic consequence of thromboelastometry activated by kaolin versus a panel of specific reagents. Anaesthesiolgy 115(2):294–302CrossRefGoogle Scholar
  47. 47.
    Gonzales E, Moore E, Moore H, Chapman M, Chin T, Ghasabyan A, Wohlauer M, Barnett C, Bensard D, Biffl W, Burlew C, Johnson J, Pieracci F, Jurkovitch G, Banerjee A, Siliman C, Sauaia A (2015) Goal-directed hemoststic resuscitation of trauma-induced coagulopathy: A pragmatic randomized clinical trial comparing a viscoelsatic assay to conventional coagulation assays. Ann Surg. doi: 10.1097/sla.0000000000001608 Google Scholar
  48. 48.
    Görlinger K, Dirkmann D, Solomon C et al (2013) Fast interpretation of thromboelastometry in non-cardiac surgery: Reliability in patients with hypo-, normo- and hypercoagulability. Br J Anasthesiol 110:222–230CrossRefGoogle Scholar
  49. 49.
    http://www.traumaregister-dgu.de. Zugegriffen: 28.8.2016
  50. 50.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Abteilung für Unfallchirurgie, Orthopädie und Sporttraumatologie, Klinikum Köln-MerheimUniversität Witten/HerdeckeKölnDeutschland

Personalised recommendations