Advertisement

Der Unfallchirurg

, Volume 120, Supplement 1, pp 5–9 | Cite as

The evolution of 3D imaging in orthopedic trauma care

  • S. R. YarboroEmail author
  • P. H. Richter
  • D. M. Kahler
Leitthema

Abstract

Three-dimensional (3D) imaging can enhance trauma care by allowing better evaluation of bony detail and implant position compared to conventional fluoroscopy or x‑ray. Intraoperative 3D imaging further improves this evaluation by allowing any necessary revisions to be made in the operating room prior to the patient emerging from anesthesia. This revision, if necessary, better achieves the surgical goals and alleviates the stressful situation of obtaining postoperative 3D imaging, where the benefit of revision must be balanced against the cost and risk of returning to the operating room. Improved image volume, resolution, and software capability have allowed surgeons to obtain high-quality, wide field views of bony anatomy that can include the uninjured side as a comparison. In this paper, the evolution of intraoperative 3D imaging over the past 25 years is discussed.

Keywords

Revision surgery Imaging, three-dimensional Computed tomography Fluoroscopy Hybrid operating room 

Die Entwicklung der 3‑D-Bildgebung in der Versorgung orthopädischer Verletzungen

Zusammenfassung

Durch dreidimensionale (3-D-)Bildgebung kann die Versorgung von Verletzungen verbessert werden, weil im Vergleich zur konventionellen Durchleuchtung oder Röntgenaufnahme eine genauere Beurteilung knöcherner Details und der Position von Implantaten möglich ist. Die intraoperative 3‑D-Bildgebung steigert diese Verbesserung noch, da sie notwendige Revisionen im Operationssaal ermöglicht, bevor der Patient aus der Narkose aufwacht. Mit einer solchen Revision, falls erforderlich, werden die Ziele des Eingriffs besser erreicht und die mit Stress verbundene Situation der Erlangung postoperativer 3‑D-Aufnahmen vermieden, bei der sowohl der Nutzen einer Revisionsoperation als auch die Kosten und Risiken einer Rückkehr in den Operationssaal abgewogen werden müssen. Verbesserungen im Bereich des Bildvolumens, der Auflösung und der Leistungsfähigkeit der Software ermöglichen es den Chirurgen, hochwertige, großflächige Darstellungen der knöchernen Anatomie zu erhalten, wozu auch die unverletzte Seite als Vergleich gehören kann. In der vorliegenden Arbeit wird die Entwicklung der intraoperativen 3‑D-Bildgebung im Lauf der letzten 25 Jahre erörtert.

Schlüsselwörter

Revisionseingriff Dreidimensionale Bildgebung Computertomographie Durchleuchtung Hybridoperationssaal 

Notes

Compliance with ethical guidelines

Conflict of interest

S.R. Yarboro, P.H. Richter, and D.M. Kahler state that they have no competing interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The supplement containing this article is not sponsored by industry.

Supplementary material

Video 1:

Demonstration of the Artis Zeego and an additional case demonstration

References

  1. 1.
    Cunningham B, Jackson K, Ortega G (2014) Intraoperative CT in the assessment of posterior wall acetabular fracture stability. Orthopedics 37(4):e328–e331CrossRefPubMedGoogle Scholar
  2. 2.
    Dikos GD, Heisler J, Choplin RH, Weber TG (2012) Normal tibiofibular relationships at the syndesmosis on axial CT imaging. J Orthop Trauma 26:433–438CrossRefPubMedGoogle Scholar
  3. 3.
    Duwelius PJ, Van Allen J, Bray TJ, Nelson D (1992) Computed tomography-guided fixation of unstable posterior pelvic ring disruptions. J Trauma 6:420–426Google Scholar
  4. 4.
    Gardner MJ, Demetrakopoulos D, Briggs SM, Helfet DL, Lorich DG (2006) Malreduction of the tibiofibular syndesmosis in ankle fractures. Foot Ankle Int 27(10):788–792CrossRefPubMedGoogle Scholar
  5. 5.
    Gay SB, Sistrom C, Wang G‑J, Kahler DM, Boman T, Goitz HT, McHugh N (1992) Percutaneous screw fixation of acetabular fractures with CT guidance: preliminary results of a new technique. AJR Am J Roentgenol 158(4):819–822CrossRefPubMedGoogle Scholar
  6. 6.
    Hawi N, Suero EM, Liodakis E, Decker S, Krettek C, Citak M (2014) Intra-operative assessment of femoral antetorsion using Is-C 3D; a cadaver study. Injury 45(3):506–509CrossRefPubMedGoogle Scholar
  7. 7.
    Hufner T, Stubig T, Citak M et al (2009) Utility of intraoperative three-dimensional imaging at the hip and knee joints with and without navigation. J Bone Joint Surg Am 91(Suppl 1):33–42CrossRefPubMedGoogle Scholar
  8. 8.
    Kahler DM (2004) Image guidance: fluoroscopic navigation. Clin Orthop Rel Res 421:70–76CrossRefGoogle Scholar
  9. 9.
    Kahler DM (2003) Percutaneous screw insertion for acetabular and sacral fractures. Tech Orthop 18(2):174–183CrossRefGoogle Scholar
  10. 10.
    Marmor M, Hansen E, Han HK, Buckley J, Matityahu A (2011) Limitations of standard fluoroscopy in detecting rotational malreduction of the syndesmosis in an ankle fracture model. Foot Ankle Int 32(6):616–622CrossRefPubMedGoogle Scholar
  11. 11.
    Mukhopadhyay S, Metcalfe A, Guha AR, Mohanty K, Hemmadi S, Lyons K, O’Doherty D (2011) Malreduction of syndesmosis; dare we consider the anatomical variation. Injury 42:1073–1076CrossRefPubMedGoogle Scholar
  12. 12.
    Richter M, Geerling J, Zech S, Goesling T, Krettek C (2005) Intraoperative three-dimensional imaging with a motorized mobile C‑Arm (Siremobil Iso-C-3D) in foot and ankle trauma care. J Orthop Trauma 19(4):259–266CrossRefPubMedGoogle Scholar
  13. 13.
    Richter PH, Yarboro SR, Kraus M, Gebhard F (2015) One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room. Injury 46(Suppl 4):S129–S134CrossRefPubMedGoogle Scholar
  14. 14.
    Sagi HC, Shah AR, Sanders RW (2012) The functional consequence of syndesmotic joint malreduction at a minimum 2‑year follow-up. J Orthop Trauma 26:439–443CrossRefPubMedGoogle Scholar
  15. 15.
    Schnetzke M, Fuchs J, Vetter SY, Beisemann N, Keil H, Gruetzner PA, Franke J (2016) Intraoperative 3D imaging in the treatment of elbow fractures – a retrospective analysis of indications, intraoperative revision rates, and implications in 36 cases. BMC Med Imaging 16(1):24CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Summers HD, Sinclair MK, Stover MD (2013) A reliable method for intraoperative evaluation of syndesmotic reduction. J Orthop Trauma 27:196–200CrossRefPubMedGoogle Scholar
  17. 17.
    Von Recum J, Wendl K, Vock B, Gruetzner PA, Franke J (2012) Intraoperative 3D C‑arm imaging. State of the art. Unfallchirurg 115:196–201CrossRefGoogle Scholar
  18. 18.
    Weening B, Bhandari M (2005) Predictors of functional outcome following transsyndesmotic screw fixation of ankle fractures. J Orthop Trauma 19:102–108CrossRefPubMedGoogle Scholar
  19. 19.
    Wicky S, Blaser PF, Blanc CH, Leyvraz PF, Schnyder P, Meuli RA (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10(8):1227–1232CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dept. of Orthopaedic SurgeryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Klinik für Unfall-, Hand-, Plastische und WiederherstellungschirurgieUniversitätsklinikum UlmUlmGermany

Personalised recommendations