Der Unfallchirurg

, Volume 118, Supplement 1, pp 80–92 | Cite as

A history of spine biomechanics

Focus on 20th century progress
  • T.R. OxlandEmail author


The application of mechanical principles to problems of the spine dates to antiquity. Significant developments related to spinal anatomy and biomechanical behaviour made by Renaissance and post-Renaissance scholars through the end of the 19th century laid a strong foundation for the developments since that time. The objective of this article is to provide a historical overview of spine biomechanics with a focus on the developments in the 20th century. The topics of spine loading, spinal posture and stability, spinal kinematics, spinal injury, and surgical strategies were reviewed.


Posture Stability Kinematics Functional spinal unit Surgery 

Historisches zur Biomechanik der Wirbelsäule

Fortschritte des 20. Jahrhunderts im Fokus


Die Anwendung mechanischer Prinzipien im Rahmen der Behandlung von Problemen an der Wirbelsäule geht bis in die Antike zurück. Wesentliche Entwicklungen bezogen auf die Wirbelsäulenanatomie und das biomechanische Verhalten durch Gelehrte der Renaissance und Postrenaissance gegen Ende des 19. Jahrhunderts bildeten eine solide Grundlage für die Fortschritte seit dieser Zeit. Ziel dieses Beitrags ist es, einen historischen Überblick über die Biomechanik der Wirbelsäule zu geben, fokussiert wurde dabei auf die Entwicklungen im 20. Jahrhundert. Die Themen Wirbelsäulenbelastung, Wirbelsäulenhaltung und -stabilität, Wirbelsäulenkinematik, Rückenmarksverletzung und chirurgische Strategien wurden überprüft.


Körperhaltung Stabilität Kinematik Funktionelle Einheit der Wirbelsäule Chirurgie 



The author wishes to thank Professor Manohar Panjabi, Professor Hans-Joachim Wilke, and Mr. Masoud Malakoutian for their constructive comments on the manuscript. In addition, the author thanks the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research for long-term research support at the University of British Columbia.

Compliance with ethical guidelines

Conflict of interest

T.R. Oxland states that there are no conflicts of interest.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

This article is part of a supplement sponsored by SIGNUS Medizintechnik GmbH.


  1. 1.
    Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T et al (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila Pa 1976) 15(11):1142–1147CrossRefGoogle Scholar
  2. 2.
    Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 62(3):358–362Google Scholar
  3. 3.
    Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10(6):524PubMedCrossRefGoogle Scholar
  4. 4.
    Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury. Spine 7(3):184PubMedCrossRefGoogle Scholar
  5. 5.
    Alem NM, Nusholtz GS, Melvin JW (1982) Superior-Inferior Head Impact Tolerance Levels. Final Report. University of Michigan Transportation Research Institute, UMTRI-82-41, Ann ArborGoogle Scholar
  6. 6.
    An HS, Lim TH, You JW, Hong JH, Eck J, McGrady L (1995) Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine (Phila Pa 1976) 20(18):1979–1983CrossRefGoogle Scholar
  7. 7.
    Andersson GBJ, Örtengren R (1974) Myoelectric back muscle activity during sitting. Scand J Rehab Med Suppl 3:73Google Scholar
  8. 8.
    Andersson GBJ, Örtengren R, Nachemson A (1977) Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop 129:156PubMedCrossRefGoogle Scholar
  9. 9.
    Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality after arthrodesis. Spine (Phila Pa 1976) 38(10):E594–E601CrossRefGoogle Scholar
  10. 10.
    Anderst WJ, Donaldson WF 3rd, Lee JY, Kang JD (2015) Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech 48(7):1286–1293Google Scholar
  11. 11.
    Appleton AB (1946) Posture. Practitioner 156:48–55PubMedGoogle Scholar
  12. 12.
    Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Larivièr e C (2009) Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Clin Biomech (Bristol, Avon) 24(7):533–541CrossRefGoogle Scholar
  13. 13.
    Ashman RB, Galpin RD, Corin JD, Johnston CE 2nd (1989) Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model. Spine (Phila Pa 1976) 14(12):1398–1405CrossRefGoogle Scholar
  14. 14.
    Asmussen E, Klausen K (1962) Form and function of the erect human spine. Clin Orthop 25:55–63PubMedGoogle Scholar
  15. 15.
    Atkinson PJ (1967) Variation in trabecular structure of vertebrae with age. Calcif Tissue Res 1:24PubMedCrossRefGoogle Scholar
  16. 16.
    Bauze RJ, Ardran GM (1978) Experimental production of for- ward dislocation in the human cervical spine. J Bone Joint Surg 60B:239–245Google Scholar
  17. 17.
    Bell GH, Dunbar O, Beck JS, Gibb A (1967) Variation in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res 1:75PubMedCrossRefGoogle Scholar
  18. 18.
    Belytschko T, Kulak RF, Schultz AB (1974) Finite element stress analysis of an intervertebral disc. J Biomech 7:277–285PubMedCrossRefGoogle Scholar
  19. 19.
    Bennett GJ, Serhan HA, Sorini PM, Willis BH (1997) An experimental study of lumbar destabilization. Restabilization and bone density. Spine (Phila Pa 1976) 22(13):1448–1453CrossRefGoogle Scholar
  20. 20.
    Bergmann G, Duda G (2010) Das Gesetz der Transformation der Knochen by JW Wolff: Hirschwald, Berlin 1892 – Reprint 300 Seiten – Mit vier Nachworten und historischen DokumentenGoogle Scholar
  21. 21.
    Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54PubMedCrossRefGoogle Scholar
  22. 22.
    Berkson MH, Nachemson A, Schultz AB (1979) Mechanical properties of human lumbar spine motion segments–Part 2: responses in compression and shear; influence of gross morphology. J Biomech Eng 101:53CrossRefGoogle Scholar
  23. 23.
    Bonne AJ (1969) On the shape of the human vertebral column. Acta Orthop Belg 35(3):567–583Google Scholar
  24. 24.
    Borelli GA (1989) De Motu Animalium. Maquet P, trans. Springer-Verlag, BerlinGoogle Scholar
  25. 25.
    Braune W, Fischer O (1895) Human gait: trial on loaded and unloaded humans [in German]. Saech Gesellsch Wissensch 21:153–322Google Scholar
  26. 26.
    Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions. Spine 11:149PubMedCrossRefGoogle Scholar
  27. 27.
    Brinckmann P, Horst M (1985) The influence of vertebral body fracture, intradiscal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine 10(2):138PubMedCrossRefGoogle Scholar
  28. 28.
    Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14(6):606–610CrossRefGoogle Scholar
  29. 29.
    Brodke DS, Dick JC, Kunz DN, McCabe R, Zdeblick TA (1997) Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Spine (Phila Pa 1976) 22(1):26–31CrossRefGoogle Scholar
  30. 30.
    Brown T, Hanson R, Yorra A (1957) Some mechanical tests on the lumbo-sacral spine with particular reference to the intervertebral discs. J Bone Joint Surg 39A:1135Google Scholar
  31. 31.
    Callaghan JP, McGill SM (2001) Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon) 16(1):28–37CrossRefGoogle Scholar
  32. 32.
    Chaffin DB (1969) A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2(4):429–441CrossRefGoogle Scholar
  33. 33.
    Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 11(1):1–15CrossRefGoogle Scholar
  34. 34.
    Cholewicki J, McGill SM, Norman RW (1995) Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J Biomech 28(3):321–331CrossRefGoogle Scholar
  35. 35.
    Christophy M, Faruk Senan NA, Lotz JC, O’Reilly OM (2012) A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11(1–2):19–34PubMedCrossRefGoogle Scholar
  36. 36.
    Coe JD, Warden KE, Herzig MA, McAfee PC (1990) Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976) 15(9):902–907CrossRefGoogle Scholar
  37. 37.
    Crisco JJ 3rd, Panjabi MM (1992a) Euler stability of the human ligamentous lumbar spine Part I: theory. Clin Biomech (Bristol, Avon) 7(1):19–26Google Scholar
  38. 38.
    Cripton PA, Bruehlmann SB, Orr TE, Oxland TR, Nolte LP (2000) In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts. J Biomech 33(12):1559–1568CrossRefGoogle Scholar
  39. 39.
    Crisco JJ, Panjabi MM, Yamamoto I, Oxland TR (1992b) Euler stability of the human ligamentous lumbar spine Part II: experiment. Clin Biomech (Bristol, Avon) 7(1):27–32Google Scholar
  40. 40.
    Dick JC, Brodke DS, Zdeblick TA, Bartel BD, Kunz DN, Rapoff AJ (1997) Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. Spine (Phila Pa 1976) 22(7):744–750CrossRefGoogle Scholar
  41. 41.
    Duval-Beaupère G, Schmidt C, Cosson PA (1992) Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462CrossRefGoogle Scholar
  42. 42.
    Dvorak J, Hayek J, Zehnder R (1987) CT-functional diagnostics of the rotatory instability of the upper cervical spine. Part 2. An evaluation on healthy adults and patients with suspected instability. Spine (Phila Pa 1976) 12(8):726–731CrossRefGoogle Scholar
  43. 43.
    Dvorák J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending. Spine (Phila Pa 1976) 16(5):562–571Google Scholar
  44. 44.
    Dvorak J, Antinnes JA, Panjabi M, Loustalot D, Bonomo M (1992) Age and gender related normal motion of the cervical spine. Spine (Phila Pa 1976) 17(10 Suppl):S393–S398Google Scholar
  45. 45.
    Dvorák J, Vajda EG, Grob D, Panjabi MM (1995) Normal motion of the lumbar spine as related to age and gender. Eur Spine J 4(1):18–23PubMedCrossRefGoogle Scholar
  46. 46.
    El-Rich M, Shirazi-Adl A, Arjmand N (2004) Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies. Spine (Phila Pa 1976) 29(23):2633–2642CrossRefGoogle Scholar
  47. 47.
    Eppinger R, Sun E, Bandak F, Huffier M, Khaewpong N, Maltese M et al (1999) Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems—II. NHTSA reportGoogle Scholar
  48. 48.
    Er U, Naderi S (2013) Paulus aegineta: review of spine-related chapters in “Epitomoe medicoe libri septem”. Spine (Phila Pa 1976) 38(8):692–695CrossRefGoogle Scholar
  49. 49.
    Evans FG, Lissner HR (1959) Biomechanical studies on the lumbar spine and pelvis. J Bone Joint Surg Am 41:278–290PubMedGoogle Scholar
  50. 50.
    Evans FG, Lissner HR, Patrick LM (1962) Acceleration-induced strains in the intact vertebral column. J Appl Physiol 17:405–409Google Scholar
  51. 51.
    Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52(3):468–497Google Scholar
  52. 52.
    Fick R (1911) Handbuch der Anatomie und Mechanik der Gelenke unter Berücksichtigung der bewegenden Muskeln Spezielle Gelenk- und Muskelmechanik. Fischer, JenaGoogle Scholar
  53. 53.
    Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand Suppl 100:1CrossRefGoogle Scholar
  54. 54.
    Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30(18):2024–2029CrossRefGoogle Scholar
  55. 55.
    Glazer PA, Colliou O, Lotz JC, Bradford DS (1996) Biomechanical analysis of lumbosacral fixation. Spine (Phila Pa 1976) 21(10):1211–1222CrossRefGoogle Scholar
  56. 56.
    Goel VK, Goyal S, Clark C, Nishiyama K, Nye T (1985) Kinematics of the whole lumbar spine: effect of discectomy. Spine 10(6):543PubMedCrossRefGoogle Scholar
  57. 57.
    Goel VK, Nishiyama K, Weinstein JN, Liu YK (1986) Mechanical properties of lumbar spinal motion segments as affected by partial disc removal. Spine 11(10):1008PubMedCrossRefGoogle Scholar
  58. 58.
    Goel VK, Kim YE, Lim TH, Weinstein JN (1988a) An analytical investigation of the mechanics of spinal instrumentation. Spine (Phila Pa 1976) 13(9):1003–1011Google Scholar
  59. 59.
    Goel VK, Clark CR, Gallaes K, Liu YK (1988b) Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J Biomech 21(8):673–680Google Scholar
  60. 60.
    Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine (Phila Pa 1976) 16(4):450–456CrossRefGoogle Scholar
  61. 61.
    Gurdijan ES, Lissner HR, Patrick LM (1962) Protection of the head and neck in sports. JAMA 182:509–512Google Scholar
  62. 62.
    Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. J Bone Joint Surg Am 70(5):680–691Google Scholar
  63. 63.
    Hakim NS, King AI (1979) A three dimensional finite element dynamic response analysis of a vertebra with experimental verification. J Biomech 12:277–292PubMedCrossRefGoogle Scholar
  64. 64.
    Han KS, Zander T, Taylor WR, Rohlmann A (2012) An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med Eng Phys 34(6):709–716CrossRefGoogle Scholar
  65. 65.
    Hansson T, Roos B (1980) The influence of age, height and weight on the bone mineral content of lumbar vertebrae. Spine 5:545PubMedCrossRefGoogle Scholar
  66. 66.
    Hardy WG, Lissner HR, Webster JE, Gurdjian ES (1958) Repeated loading tests of the lumbar spine; a preliminary report. Surg Forum 9:690–695PubMedGoogle Scholar
  67. 67.
    Hattori S, Oda H, Kawai S (1981) Cervical intradiscal pressure in movements and traction of the cervical spine. Z Orthop 119:568Google Scholar
  68. 68.
    Haughton S (1866) On hanging, considered from a mechanical and physiological point of view. Philos Mag 31:23–24Google Scholar
  69. 69.
    Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40(2):271–280CrossRefGoogle Scholar
  70. 70.
    Hirsch C, Nachemson A (1954) A new observation on the mechanical behaviour of lumbar discs. Acta Orthop Scand 23:254PubMedCrossRefGoogle Scholar
  71. 71.
    Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine (Phila Pa 1976) 21(22):2640–2650CrossRefGoogle Scholar
  72. 72.
    Hodgson VR, Thomas LM (1980) Mechanisms of cervical spine injury during impact to the protected head. In 24th Stapp Car Crash Conference Proceedings. Society of Automotive Engineers, Warrendale, PA, pp 15–42Google Scholar
  73. 73.
    Ishii T, Mukai Y, Hosono N, Sakaura H, Fujii R, Nakajima Y, Tamura S, Sugamoto K, Yoshikawa H (2004) Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis. Spine (Phila Pa 1976) 29(24):2826–2831CrossRefGoogle Scholar
  74. 74.
    Ishii T, Mukai Y, Hosono N, Sakaura H, Fujii R, Nakajima Y, Tamura S, Iwasaki M, Yoshikawa H, Sugamoto K (2006) Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis. Spine (Phila Pa 1976) 31(2):155–160CrossRefGoogle Scholar
  75. 75.
    Jackson RP, Peterson MD, McManus AC, Hales C (1998) Compensatory spinopelvic balance over the hip axis and better reliability in measuring lordosis to the pelvic radius on standing lateral radiographs of adult volunteers and patients. Spine (Phila Pa 1976) 23(16):1750–1767CrossRefGoogle Scholar
  76. 76.
    Keele KD, Pedretti C (1979) Leonardo da Vinci: Corpus of the Anatomical Studies in the Collection of Her Majesty the Queen at Windsor Castle. Harcourt Brace Jovanovich, LondonGoogle Scholar
  77. 77.
    Keller TS, Colloca CJ, Harrison DE, Harrison DD, Janik TJ (2005) Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Spine J 5(3):297–309PubMedCrossRefGoogle Scholar
  78. 78.
    Kiefer A, Shirazi-Adl A, Parnianpour M (1997) Stability of the human spine in neutral postures. Eur Spine J 6(1):45–53PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    King AI (1979) Tolerance of the neck to indirect impact. Tech- nical Report 9, NO 00014-75-C-1015, Wayne State University, Bioengineering Center, DetroitGoogle Scholar
  80. 80.
    King AI, Viano DC, Mizeres N, States JD (1995) Humanitarian benefits of cadaver research on injury prevention. J Trauma 38(4):564–569Google Scholar
  81. 81.
    Kingma I, Staudenmann D, van Dieën JH (2007) Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk. J Electromyogr Kinesiol 17(1):14–24. (Epub 2006 Mar 13)PubMedCrossRefGoogle Scholar
  82. 82.
    Kothe R, Panjabi MM, Liu W (1997) Multidirectional instability of the thoracic spine due to iatrogenic pedicle injuries during transpedicular fixation. A biomechanical investigation. Spine (Phila Pa 1976) 22(16):1836–1842CrossRefGoogle Scholar
  83. 83.
    Lafage V, Schwab F, Patel A, Hawkinson N, Farcy JP (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34(17):E599–E606CrossRefGoogle Scholar
  84. 84.
    Lee CK, Langrana NA (1984) Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976) 9(6):574–581CrossRefGoogle Scholar
  85. 85.
    Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Joint Surg Am 60(1):41–55PubMedGoogle Scholar
  87. 87.
    Liu YK, Ray G, Hirsch C (1975) The resistance of the lumbar spine to direct shear. Orthop Clin North Am 6:33PubMedGoogle Scholar
  88. 88.
    Lorenz M, Patwardhan A, Vanderby R (1983) Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8:122PubMedCrossRefGoogle Scholar
  89. 89.
    Lovett RW (1900) The mechanics of lateral curvature of the spine. Trans Am Orthop Assoc 113(1):251–273Google Scholar
  90. 90.
    Lucas D, Bresler B (1961) Stability of ligamentous spine. Biomechanics Lab. Report 40. University of California, San FranciscoGoogle Scholar
  91. 91.
    Lumsden RM 2nd, Morris JM (1968) An in vivo study of axial rotation and immoblization at the lumbosacral joint. J Bone Joint Surg Am 50(8):1591–1602Google Scholar
  92. 92.
    Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359CrossRefGoogle Scholar
  93. 93.
    Lysell E (1969) Motion in the cervical spine. An experimental study on autopsy specimens. Acta Orthop Scand Suppl 123:1CrossRefGoogle Scholar
  94. 94.
    Marras WS, Granata KP (1997) Changes in trunk dynamics and spine loading during repeated trunk exertions. Spine (Phila Pa 1976) 22(21):2564–2570CrossRefGoogle Scholar
  95. 95.
    Marras WS, Lavender SA, Leurgans SE, Rajulu SL, Allread WG, Fathallah FA, Ferguson SA (1993) The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine (Phila Pa 1976) 18(5):617–628CrossRefGoogle Scholar
  96. 96.
    McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1991) The effect of spinal implant rigidity on vertebral bone density. A canine model. Spine (Phila Pa 1976) 16(6 Suppl):S190–S197Google Scholar
  97. 97.
    McElhaney JH, Paver JG, McCrackin HJ, Maxwell GM (1983) Cervical spine compression responses. In: 27th Stapp Car Crash Conference Proceedings. Society of Automotive Engineers, Warrendale, PA, pp 163–178Google Scholar
  98. 98.
    McGill SM (2001) Low back stability: from formal description to issues for performance and rehabilitation. Exerc Sport Sci Rev 29(1):26–31PubMedCrossRefGoogle Scholar
  99. 99.
    McGill SM, Norman RW (1986) Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine (Phila Pa 1976) 11(7):666–678CrossRefGoogle Scholar
  100. 100.
    McGill SM, Karpowicz A (2009) Exercises for spine stabilization: motion/motor patterns, stability progressions, and clinical technique. Arch Phys Med Rehabil 90(1):118–126CrossRefGoogle Scholar
  101. 101.
    McLain RF, McKinley TO, Yerby SA, Smith TS, Sarigul-Klijn N (1997) The effect of bone quality on pedicle screw loading in axial instability. A synthetic model. Spine (Phila Pa 1976) 22(13):1454–1460CrossRefGoogle Scholar
  102. 102.
    McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine (Phila Pa 1976) 17(1):66–73CrossRefGoogle Scholar
  103. 103.
    Mertz HJ, Patrick LM (1971) Strength and response of the human neck. In: 15th Stapp Car Crash Conference Pro-ceedings, New York, Society of Automotive Engineers, pp 207–255Google Scholar
  104. 104.
    Messerer O (1880) Über Elasticität und Festigkeit der menschlichen Knochen. J. G. Cottaschen Buchhandlung, StuttgartGoogle Scholar
  105. 105.
    Meyer H (1873) Die Statik und Mechanik des menschlichen Knochengerüstes. Wilhelm Engelman, LeipzigGoogle Scholar
  106. 106.
    Missios S, Bekelis K, Roberts DW (2014) Neurosurgery in the Byzantine Empire: the contributions of Paul of Aegina (625–690 AD). J Neurosurg 120(1):244–249CrossRefGoogle Scholar
  107. 107.
    Moroney SP, Schultz AB, Miller JAA, Andersson GBJ (1988) Load-displacement properties of lower cervical spine motion segments. J. Biomech 21(9):767CrossRefGoogle Scholar
  108. 108.
    Mosekilde L, Mosekilde L (1986) Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7(3):207–212CrossRefGoogle Scholar
  109. 109.
    Nachemson A (1960) Lumbar interdiscal pressure. Acta Orthop Scand Suppl 43:1–104PubMedCrossRefGoogle Scholar
  110. 110.
    Nachemson A (1966) The load on lumbar discs in different positions of the body. Clin. Orthop 45:107PubMedGoogle Scholar
  111. 111.
    Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 46:1077–1092Google Scholar
  112. 112.
    Naderi S, Andalkar N, Benzel EC (2007a) History of spine biomechanics: part I–the pre-Greco-Roman, Greco-Roman, and medieval roots of spine biomechanics. Neurosurgery 60(2):382–390Google Scholar
  113. 113.
    Naderi S, Andalkar N, Benzel EC (2007b) History of spine biomechanics: part II—from the Renaissance to the 20th century. Neurosurgery 60(2):392–403Google Scholar
  114. 114.
    Nagel DA, Kramers PC, Rahn BA, Cordey J, Perren SM (1991) A paradigm of delayed union and nonunion in the lumbosacral joint. A study of motion and bone grafting of the lumbosacral spine in sheep. Spine (Phila Pa 1976) 16(5):553–559CrossRefGoogle Scholar
  115. 115.
    Neumann P, Ekström LA, Keller TS, Perry L, Hansson TH (1994) Aging, vertebral density, and disc degeneration alter the tensile stress-strain characteristics of the human anterior longitudinal ligament. J Orthop Res 12(1):103–112CrossRefGoogle Scholar
  116. 116.
    Nibu K, Panjabi MM, Oxland T, Cholewicki J (1997) Multidirectional stabilizing potential of BAK interbody spinal fusion system for anterior surgery. J Spinal Disord 10(4):357–362Google Scholar
  117. 117.
    Nightingale RW, McElhaney JH, Richardson WJ, Best TM, Myers BS (1996) Experimental impact injury to the cervical spine: relating motion of the head and the mechanism of injury. J Bone Joint Surg Am 78(3):412–421Google Scholar
  118. 118.
    Nowinski GP, Visarius H, Nolte LP, Herkowitz HN (1993) A biomechanical comparison of cervical laminaplasty and cervical laminectomy with progressive facetectomy. Spine (Phila Pa 1976) 18(14):1995–2004CrossRefGoogle Scholar
  119. 119.
    Nusholtz GS, Huelke DF, Lux P, Alem NM, Montalvo F (1983) Cervical spine injury mechanisms. In: 27th Stapp Car Crash Conference Proceedings, Warrendale, PA, Society of Automotive Engineers, pp 179–198Google Scholar
  120. 120.
    Oxland TR, Panjabi MM (1992) The onset and progression of spinal injury: a demonstration of neutral zone sensitivity. J Biomech 25(10):1165–1172CrossRefGoogle Scholar
  121. 121.
    Oxland TR, Lund T, Jost B, Cripton P, Lippuner K et al (1996) The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance An in vitro study. Spine (Phila Pa 1976) 21(22):2558–2569CrossRefGoogle Scholar
  122. 122.
    Panjabi MM (1988b) Biomechanical evaluation of spinal fixation devices: I A conceptual framework. Spine (Phila Pa 1976) 13(10):1129–1134Google Scholar
  123. 123.
    Panjabi MM (1992a) The stabilizing system of the spine Part I Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5(4):383–389Google Scholar
  124. 124.
    Panjabi MM (1992b) The stabilizing system of the spine Part II Neutral zone and instability hypothesis. J Spinal Disord 5(4):390–396Google Scholar
  125. 125.
    Panjabi MM (2006) A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J 15(5):668–676CrossRefGoogle Scholar
  126. 126.
    Panjabi M, White AA 3rd (1971) A mathematical approach for three-dimensional analysis of the mechanics of the spine. J Biomech 4(3):203–211CrossRefGoogle Scholar
  127. 127.
    Panjabi MM, White AA 3rd, Johnson RM (1975) Cervical spine mechanics as a function of transection of components. J Biomech 8(5):327–336CrossRefGoogle Scholar
  128. 128.
    Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine: as shown by three-dimensional load-displacement curves. J Bone Joint Surg 58A:642Google Scholar
  129. 129.
    Panjabi MM, Krag MH, White AA 3rd Southwick WO (1977) Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8(1):181–192Google Scholar
  130. 130.
    Panjabi MM, Hausfeld JN, White AA 3rd (1981) A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthop Scand 52(3):315–326CrossRefGoogle Scholar
  131. 131.
    Panjabi MM, Goel VK, Takata K (1982) Physiological strains in lumbar spinal ligaments, an in vitro biomechanical study. Spine 7(3):192PubMedCrossRefGoogle Scholar
  132. 132.
    Panjabi MM, Krag MH, Chung TQ (1984) Effects of disc injury on mechanical behaviour of the human spine. Spine 9(7):707PubMedCrossRefGoogle Scholar
  133. 133.
    Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO (1986) Three-dimensional load-displacement curves due to forces on the cervical spine. J Orthop Res 4(2):152–161Google Scholar
  134. 134.
    Panjabi MM, Dvorak J, Duranceau J et al (1988a) Three dimensional movements of the upper cervical spine. Spine 13(7):726Google Scholar
  135. 135.
    Panjabi M, Abumi K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscle forces. A biomechanical model. Spine (Phila Pa 1976) 14(2):194–200CrossRefGoogle Scholar
  136. 136.
    Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behaviour of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76(3):413–424Google Scholar
  137. 137.
    Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J et al (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine (Phila Pa 1976) 26(24):2692–2700CrossRefGoogle Scholar
  138. 138.
    Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24(10):1003–1009CrossRefGoogle Scholar
  139. 139.
    Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21(3):540–546Google Scholar
  140. 140.
    Pearcy MJ, Tibrewal SB (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine (Phila Pa 1976) 9(6):582–587CrossRefGoogle Scholar
  141. 141.
    Pearcy M, Portek I, Shepherd J (1985) The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine (Phila Pa 1976) 10(2):150–153Google Scholar
  142. 142.
    Penning L (1968) Functional pathology of the cervical spine. Excerpta Medica, AmsterdamGoogle Scholar
  143. 143.
    Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine. Acta Orthop Scand 25(Suppl):1–101CrossRefGoogle Scholar
  144. 144.
    Polga DJ, Beaubien BP, Kallemeier PM, Schellhas KP, Lew WD et al (2004) Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine (Phila Pa 1976) 29(12):1320–1324CrossRefGoogle Scholar
  145. 145.
    Pope MH (2005) Giovanni Alfonso Borelli-the father of biomechanics. Spine 30:2350–2355PubMedCrossRefGoogle Scholar
  146. 146.
    Posner I, White AA 3rd, Edwards WT, Hayes WC (1982) Biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine (Phila Pa 1976) 7(4):374–389CrossRefGoogle Scholar
  147. 147.
    Provencher MT, Abdu WA (2000) Giovanni Alfonso Borelli: “Father of spinal biomechanics.” Spine 25:131–136PubMedCrossRefGoogle Scholar
  148. 148.
    Radebold A, Cholewicki J, Polzhofer GK, Greene HS (2001) Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine (Phila Pa 1976) 26(7):724–730CrossRefGoogle Scholar
  149. 149.
    Rapoff AJ, Ghanayem AJ, Zdeblick TA (1997) Biomechanical comparison of posterior lumbar interbody fusion cages. Spine (Phila Pa 1976) 22(20):2375–2379CrossRefGoogle Scholar
  150. 150.
    Rauber A (1876) Elastizität und Festigkeit der Knochen. Engelmann, LeipzigGoogle Scholar
  151. 151.
    Reeves NP, Cholewicki J (2010) Expanding our view of the spine system. Eur Spine J 19(2):331–332CrossRefGoogle Scholar
  152. 152.
    Reeves NP, Narendra KS, Cholewicki J (2007) Spine stability: the six blind men and the elephant. Clin Biomech (Bristol, Avon) 22(3):266–274. (Epub 2007 Jan 8. Review)Google Scholar
  153. 153.
    Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Joint Surg 42B:810–823Google Scholar
  154. 154.
    Rohlmann A, Bergmann G, Graichen F (1994) A spinal fixation device for in vivo load measurement. J Biomech 27(7):961–967CrossRefGoogle Scholar
  155. 155.
    Rohlmann A, Bergmann G, Graichen F (1997) Loads on an internal spinal fixation device during walking. J Biomech 30(1):41–47CrossRefGoogle Scholar
  156. 156.
    Rohlmann A, Gabel U, Graichen F, Bender A, Bergmann G (2007) An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column. Med Eng Phys 29(5):580–585CrossRefGoogle Scholar
  157. 157.
    Rohlmann A, Graichen F, Kayser R, Bender A, Bergmann G (2008) Loads on a telemeterized vertebral body replacement measured in two patients. Spine (Phila Pa 1976) 33(11):1170–1179CrossRefGoogle Scholar
  158. 158.
    Roussouly P, Pinheiro-Franco JL (2011) Sagittal parameters of the spine: biomechanical approach. Eur Spine J 20(Suppl 5):578–585Google Scholar
  159. 159.
    Ruff S (1950) Brief acceleration: less than one second, in German Aviation Medicine, World War II, BD I, chapter VI-C. United States Government Printing Office, Washington, DC, pp 584–597Google Scholar
  160. 160.
    Sanan A, Rengachary SS (1996) The history of spinal biomechanics. Neurosurgery 39:657–669PubMedCrossRefGoogle Scholar
  161. 161.
    Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24(23):2468–2474CrossRefGoogle Scholar
  162. 162.
    Schiötz EH, Cyriax J (1975) Manipulation Past and Present. William Heinemann, LondonGoogle Scholar
  163. 163.
    Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46(14):2342–2355PubMedCrossRefGoogle Scholar
  164. 164.
    Schmorl G, Junghanns H (1951) Die gesunde und kranke Wirbelsäule in Röntgenbild und Klinik. Thieme, StuttgartGoogle Scholar
  165. 165.
    Schultz AB, Galante JO (1970) A mathematical model for the study of the mechanics of the human vertebral column. J Biomech 3(4):405–16PubMedCrossRefGoogle Scholar
  166. 166.
    Schultz AB, Andersson GB (1981) Analysis of loads on the lumbar spine. Spine (Phila Pa 1976) 6(1):76–82CrossRefGoogle Scholar
  167. 167.
    Shirazi-Adl A, Parnianpour M (1993) Nonlinear response analysis of the human ligamentous lumbar spine in compression. On mechanisms affecting the postural stability. Spine (Phila Pa 1976) 18(1):147–158CrossRefGoogle Scholar
  168. 168.
    Shirazi-Adl SA, Shrivastava SC, Ahmed AM (1984) Stress analysis of the lumbar disc-body unit in compression: a three-dimensional nonlinear finite element study. Spine 9(2):120PubMedCrossRefGoogle Scholar
  169. 169.
    Shirazi-Adl A, El-Rich M, Pop DG, Parnianpour M (2005 ) Spinal muscle forces, internal loads and stability in standing under various postures and loads–application of kinematics-based algorithm. Eur Spine J 14(4):381–392CrossRefGoogle Scholar
  170. 170.
    Smeathers JE, Joanes DN (1988) Dynamic compressive properties of human lumbar intervertebral joints: a comparison between fresh and thawed specimens. J Biomech 21(5):425–433CrossRefGoogle Scholar
  171. 171.
    Steinberger J, Skovrlj B, Caridi JM, Cho SK (2015) The top 100 classic papers in lumbar spine surgery. Spine (Phila Pa 1976) 40(10):740–747CrossRefGoogle Scholar
  172. 172.
    Stokes IA, Gardner-Morse M (1995) Stability increase of the lumbar spine with different muscle groups: a biomechanical in vitro study. Spine (Phila Pa 1976) 20(19):2168–2169CrossRefGoogle Scholar
  173. 173.
    Tencer A, Ahmed A, Burke D (1982) Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J Biomech Eng 104(3):193PubMedCrossRefGoogle Scholar
  174. 174.
    Tencer AF, Hampton D, Eddy S (1995) Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Spine (Phila Pa 1976) 20(22):2408–2414Google Scholar
  175. 175.
    Tkaczuk H (1968) Tensile properties of human lumbar longitudinal ligaments. Acta Orthop Scand 115(Suppl):1–69CrossRefGoogle Scholar
  176. 176.
    Truumees E (2015) A history of lumbar disc herniation from Hippocrates to the 1990s. Clin Orthop Relat Res 473(6):1885–1895Google Scholar
  177. 177.
    Veres SP, Robertson PA, Broom ND (2009) The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Spine (Phila Pa 1976) 34(21):2288–2296CrossRefGoogle Scholar
  178. 178.
    Virchow H (1928) Die sagittal-flexorische Bewegung der Menschen Halswirbelsaule. Arch Orthop Chir 26:1–42CrossRefGoogle Scholar
  179. 179.
    Virgin W (1951) Experimental investigations into physical properties of intervertebral disc. J Bone Joint Surg 33B:607Google Scholar
  180. 180.
    Volkheimer D, Malakoutian M, Oxland TR, Wilke HJ (2015) Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur Spine J 24(9):1882–1892PubMedCrossRefGoogle Scholar
  181. 181.
    Volkmann AW (1872) Von der Drehbewegung des Körpers. Arch Pathol Anat Physiol Klin Med 56(4):467–504CrossRefGoogle Scholar
  182. 182.
    Wade KR, Robertson PA, Thambyah A, Broom ND (2014) How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine (Phila Pa 1976) 39(13):1018–1028CrossRefGoogle Scholar
  183. 183.
    Weber W, Weber E (1836) Mechanik der menschlichen Gehwerkzeuge. W Fischer-Verlag, Göttingen, DieterichGoogle Scholar
  184. 184.
    Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976) 20(5):526–531CrossRefGoogle Scholar
  185. 185.
    Wen N, Lavaste F, Santin JJ, Lassau JP (1993) Three-dimensional biomechanical properties of the human cervical spine in vitro. I. Analysis of normal motion. Eur Spine J 2(1):2–11PubMedCrossRefGoogle Scholar
  186. 186.
    Werne S (1957) Studies in spontaneous atlas dislocation. Acta Orthop Scand Suppl 23:1–150PubMedGoogle Scholar
  187. 187.
    White AA 3rd (1969) Analysis of the mechanics of the thoracic spine in man. An experimental study of autopsy specimens. Acta Orthop Scand Suppl 127:1–105PubMedCrossRefGoogle Scholar
  188. 188.
    White AA, Hirsch C (1971) The significance of the vertebral posterior elements in the mechanics of the thoracic spine. Clin Orthop 81:2PubMedCrossRefGoogle Scholar
  189. 189.
    White AA, Panjabi MM (1978) Clinical Biomechanics of the Spine. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  190. 190.
    Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97CrossRefGoogle Scholar
  191. 191.
    Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24(8):755–762CrossRefGoogle Scholar
  192. 192.
    Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups A biomechanical in vitro study. Spine (Phila Pa 1976) 20(2):192–198CrossRefGoogle Scholar
  193. 193.
    Wolff J (1892) Das Gesetz der Transformation der Knochen. A Hirschwald, BerlinGoogle Scholar
  194. 194.
    Yang K, King A (1984) Volvo award in biomechanics: mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9(6):557PubMedCrossRefGoogle Scholar
  195. 195.
    Zdeblick TA, Abitbol JJ, Kunz DN, McCabe RP, Garfin S (1993a) Cervical stability after sequential capsule resection. Spine (Phila Pa 1976) 18(14):2005–2008Google Scholar
  196. 196.
    Zdeblick TA, Warden KE, Zou D, McAfee PC, Abitbol JJ (1993b) Anterior spinal fixators. A biomechanical in vitro study. Spine (Phila Pa 1976) 18(4):513–517Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departments of Orthopaedics and Mechanical EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.International Collaboration on Repair Discoveries (ICORD), University of British ColumbiaVancouverCanada

Personalised recommendations