Advertisement

Der Unfallchirurg

, Volume 117, Issue 2, pp 95–98 | Cite as

Traumainduzierte Koagulopathie

Leitthema

Zusammenfassung

Die Haupttodesursache in der Gruppe der < 45-jährigen sind Traumafolgen. Hierbei zeigt sich neben Verletzungen des zentralen Nervensystems das Verbluten als häufigste Ursache. Um eine kausale Therapie möglich zu machen, werden die pathophysiologischen Ursachen der traumainduzierten Koagulopathie (TIK) betrachtet. Hierbei spielen neben der langjährig bekannten „lethal triad of trauma“ (Hypothermie, Azidose und Koagulopathie) auch Dilution und Hypoperfusion mit den Folgen einer Protein-C-Aktivierung eine maßgebliche Rolle. Die TIK ist als komplexes eigenständiges Krankheitsbild zu bewerten, welches nicht mit initialer Hyperkoagulopathie einhergeht. Eine zeitnahe differenzierte Diagnostik und zielgerichtete Therapie ist notwendig zur kausalen Therapie.

Schlüsselwörter

Polytrauma Pathophysiologie Gerinnungsfaktoren Protein C Hypothermie 

Trauma-induced coagulopathy

Abstract

The main cause of death in the patient group less than 45 years is trauma. Beside severe traumatic brain injury, bleeding remains a leading cause of death in this group. For a causal therapy, it is necessary to understand the pathophysiology of trauma-induced coagulopathy (TIC). Beside the well-known lethal triad of trauma (hypothermia, acidosis, and coagulopathy), dilution and hypoperfusion with activation of the protein C pathway play a crucial role. TIC is a complex independent syndrome which may be present without initial hypercoagulopathy. A rapid and differentiated diagnosis and goal-directed therapy is crucial for causal therapy.

Keywords

Multiple trauma Pathophysiology Coagulation factors Protein C Hypothermia 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. A.A. Hanke weist auf folgende Beziehungen hin: Vortragshonorare und Reisekostenerstattungen von CSL Behring, Tem International und Roche Diagnostics Deutschland GmbH. N. Rahe-Meyer weist auf folgende Beziehungen hin: Vortragshonorare und Reisekostenerstattungen von CSL Behring und Tem International. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Baker SP, O’Neill B, Haddon W et al (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14:187–196PubMedCrossRefGoogle Scholar
  2. 2.
    Brohi K, Singh J, Heron M et al (2003) Acute traumatic coagulopathy. J Trauma 54:1127–1130PubMedCrossRefGoogle Scholar
  3. 3.
    Brohi K, Cohen MJ, Ganter MT et al (2007) Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg 245:812–818PubMedCrossRefGoogle Scholar
  4. 4.
    Brohi K, Cohen MJ, Davenport R et al (2007) Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care 13:680–685PubMedCrossRefGoogle Scholar
  5. 5.
    Chambers LA, Chow SJ, Shaffer LET (2011) Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am J Clin Pathol 136:364–370PubMedCrossRefGoogle Scholar
  6. 6.
    Coats TJ, Brazil E, Heron M et al (2006) Impairment of coagulation by commonly used resuscitation fluids in human volunteers. Emerg Med J 23:846–849PubMedCrossRefGoogle Scholar
  7. 7.
    Cosgriff N, Moore EE, Sauaia A et al (1997) Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma 42:857–862PubMedCrossRefGoogle Scholar
  8. 8.
    Darlington DN, Kheirabadi BS, Delgado AV et al (2011) Coagulation changes to systemic acidosis and bicarbonate correction in swine. J Trauma 71:1271–1277PubMedCrossRefGoogle Scholar
  9. 9.
    Davis JW, Kaups KL (1998) Base deficit in the elderly: a marker of severe injury and death. J Trauma 45:873–877PubMedCrossRefGoogle Scholar
  10. 10.
    Dirkmann D, Hanke AA, Görlinger K et al (2008) Hypothermia and acidosis synergistically impair coagulation in human whole blood. Anesth Analg 106:1627–1632PubMedCrossRefGoogle Scholar
  11. 11.
    Esmon CT (2006) Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost 32(Suppl 1):49–60PubMedCrossRefGoogle Scholar
  12. 12.
    Fries D, Innerhofer P, Reif C et al (2006) The effect of fibrinogen substitution on reversal of dilutional coagulopathy: an in vitro model. Anesth Analg 102:347–351PubMedCrossRefGoogle Scholar
  13. 13.
    Gentilello LM, Jurkovich GJ, Stark MS (1997) Is hypothermia in the victim of major trauma protective or harmful? A randomized, prospective study. Ann Surg 226:439–447PubMedCrossRefGoogle Scholar
  14. 14.
    Haas T, Fries D, Holz C et al (2008) Less impairment of hemostasis and reduced blood loss in pigs after resuscitation from hemorrhagic shock using the small-volume concept with hypertonic saline/hydroxyethyl starch as compared to administration of 4 % gelatin or 6 % hydroxyethyl starch solution. Anesth Analg 106:1078–1086PubMedCrossRefGoogle Scholar
  15. 15.
    Hirshberg A, Dugas M, Banez EI et al (2003) Minimizing dilutional coagulopathy in exsanguinating hemorrhage: a computer simulation. J Trauma 54:454–463PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffman M, Monroe DM (2001) A cell-based model of hemostasis. Thromb Haemost 85:958–965PubMedGoogle Scholar
  17. 17.
    Johansson PI, Sorensen AM, Perner A et al (2011) Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit Care 15:272CrossRefGoogle Scholar
  18. 18.
    Knudson MM, Ikossi DG, Khaw L et al (2004) Thromboembolism after trauma: an analysis of 1602 episodes from the American College of Surgeons National Trauma Data Bank. Ann Surg 240:490–496PubMedCrossRefGoogle Scholar
  19. 19.
    Lampl L, Bock KH, Hartel W et al (1992) Disorders of hemostasis after polytrauma. On the extent of intrinsic fibrinolytic activity in the preclinical phase. Chirurg 63:305–309PubMedGoogle Scholar
  20. 20.
    Marumo M, Suehiro A, Kakishita E et al (2001) Extracellular pH affects platelet aggregation associated with modulation of store-operated Ca(2+) entry. Thromb Res 104:353–360PubMedCrossRefGoogle Scholar
  21. 21.
    Mikhail J (1999) The trauma triad of death: hypothermia, acidosis, and coagulopathy. AACN Clin Issues 10:85–94PubMedCrossRefGoogle Scholar
  22. 22.
    Mittermayr M, Streif W, Haas T et al (2007) Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg 105:905–917PubMedCrossRefGoogle Scholar
  23. 23.
    Mommsen P, Zeckey C, Frink M et al (2012) Accidental hypothermia in multiple trauma patients. Zentralbl Chir 137:264–269PubMedCrossRefGoogle Scholar
  24. 24.
    Pabinger I, Brenner B, Kalina U et al (2008) Prothrombin complex concentrate (Beriplex P/N) for emergency anticoagulation reversal: a prospective multinational clinical trial. J Thromb Haemost 6:622–631PubMedCrossRefGoogle Scholar
  25. 25.
    Rajagopalan S, Mascha E, Na J et al (2008) The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 108:71–77PubMedCrossRefGoogle Scholar
  26. 26.
    Rajek A, Greif R, Sessler DI et al (2000) Core cooling by central venous infusion of ice-cold (4 degrees C and 20 degrees C) fluid: isolation of core and peripheral thermal compartments. Anesthesiology 93:629–637PubMedCrossRefGoogle Scholar
  27. 27.
    CRASH-2 collaborators, Roberts I, Shakur H et al (2011) The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet 377:1096–1101Google Scholar
  28. 28.
    Rossaint R, Bouilon B, Cerny V et al (2010) Management of bleeding following major trauma: an updated European guideline. Crit Care 14:52CrossRefGoogle Scholar
  29. 29.
    Schöchl H, Frietsch T, Pavelka M et al (2009) Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 67:125–131PubMedCrossRefGoogle Scholar
  30. 30.
    Solomon C, Traintinger S, Ziegler B et al (2011) Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost 106:322–330PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie und IntensivmedizinMedizinische Hochschule HannoverHannoverDeutschland
  2. 2.Klinik für Anästhesiologie und operative IntensivmedizinFranziskus-Hospital BielefeldBielefeldDeutschland

Personalised recommendations