Der Unfallchirurg

, Volume 117, Issue 2, pp 99–104

Präklinisches Blutungs- und Volumenmanagement bei Schwerverletzten

Leitthema

Zusammenfassung

Hintergrund

Das Polytrauma ist die wichtigste Ursache für Morbidität und Mortalität in der Altersklasse bis 45 Jahre. Mit einem Anteil von 30–40 % ist die traumatische Hämorrhagie die häufigste vermeidbare Mortalitätsursache. Etwa jeder 4. polytraumatisierte Patient erleidet eine traumainduzierte Koagulopathie (TIC).

Material und Methoden

Es erfolgte eine selektive Literaturrecherche sowie Einbringung eigener Erfahrungen an einem überregionalen Traumazentrum zur Darstellung aktueller Erkenntnisse auf dem Gebiet des präklinischen Blutungs- und Volumenmanagements beim polytraumatisierten Patienten.

Ergebnisse

Der hämorrhagische Schock ist eine klinische Diagnose und die Erkennung durch den erstversorgenden Notarzt erfordert einen schnellen Überblick über Unfallhergang, Verletzungsmuster und hämodynamischen Status des Patienten. In Zukunft werden Hilfsmittel eine valide Einschätzung des Schockgeschehens erleichtern. Die Entstehung der TIC ist multifaktoriell und im Wesentlichen durch das Zusammenwirken von Gewebeschädigung, Schock, Hypothermie, Azidose und Verdünnung gekennzeichnet. Die präklinische Therapie orientiert sich am Konzept der „damage control resuscitation“ und umfasst die temporäre oder definitive Blutstillung, eine permissive Hypotension mit einem systolischen Zielblutdruck von 80–90 mmHg (≥ 80 mmHg bei SHT) durch zurückhaltende Infusion vornehmlich kristalloider Lösungen, den Wärmeerhalt und den Azidoseausgleich.

Schlussfolgerung

Der derzeitige Wissensstand und aktuelle Therapieempfehlungen sind dargestellt.

Schlüsselwörter

Polytrauma Traumahämorrhagie „Damage control resuscitation“ Hypotension, permissive Koagulopathie, traumainduzierte 

Prehospital resuscitation of patients with multiple injuries

Abstract

Introduction

Polytrauma is the leading cause of morbidity and mortality in young adults (aged 35–45 years). At 30–40%, traumatic hemorrhage is the most frequent preventable cause of death. Approximately every fourth patient with multiple injuries suffers from trauma-induced coagulopathy.

Methods

The current knowledge of prehospital resuscitation of patients with multiple injuries based on a selective literature research and experience in a level I trauma center are presented.

Results

Hemorrhagic shock is a clinical diagnosis and the recognition by the first responding emergency physician requires rapid evaluation of the accident situation, injury pattern and patient’s hemodynamic status. In the future, tools will help to reliably estimate shock. Development of trauma-induced coagulopathy is multifactorial and is characterized by interaction of tissue damage, shock, hypothermia, acidosis and dilution. Preclinical therapy follows the concept of damage control resuscitation and involves bleeding hemostasis, permissive hypotension with a target systolic blood pressure between 80 and 90 mmHg (≥80 mmHg in presence of traumatic brain injury) by modest infusion of primarily crystalloid solutions, avoiding hypothermia and acidosis.

Conclusion

The current knowledge and therapy recommendations are presented.

Keywords

Multiple trauma Hemorrhage Damage control resuscitation Hypotension, permissive Coagulopathy, trauma-induced 

Literatur

  1. 1.
    Beekley AC (2008) Damage control resuscitation: a sensible approach to the exsanguinating surgical patient. Crit Care Med 36(7 Suppl):267–274CrossRefGoogle Scholar
  2. 2.
    Brohi K, Singh J, Heron M, Coats T (2003) Acute traumatic coagulopathy. J Trauma 54(6):1127–1130PubMedCrossRefGoogle Scholar
  3. 3.
    Cannon W, Fraser J, Cowell E (1918) The preventative treatment of wound shock. JAMA 70(8):618–621Google Scholar
  4. 4.
    Coats TJ, Smith JE, Lockey D, Russell M (2002) Early increases in blood lactate following injury. J R Army Med Corps 148(2):140–143PubMedCrossRefGoogle Scholar
  5. 5.
    Davis JW, Parks SN, Kaups KL et al (1996) Admission base deficit predicts transfusion requirements and risk of complications. J Trauma 41(5):769–774PubMedCrossRefGoogle Scholar
  6. 6.
    Groeneveld AB, Navickis RJ, Wilkes MM (2011) Update on the comparative safety of colloids: a systematic review of clinical studies. Ann Surg 253(3):470–483. doi:10.1097/SLA.0b013e318202ff00PubMedCrossRefGoogle Scholar
  7. 7.
    Hussmann B, Lefering R, Waydhas C et al (2011) Prehospital intubation of the moderately injured patient: a cause of morbidity? A matched-pairs analysis of 1,200 patients from the DGU Trauma Registry. Crit Care 15(5):207. doi:10.1186/cc10442CrossRefGoogle Scholar
  8. 8.
    Hussmann B, Lefering R, Waydhas C et al (2013) Does increased prehospital replacement volume lead to a poor clinical course and an increased mortality? A matched-pair analysis of 1896 patients of the Trauma Registry of the German Society for Trauma Surgery who were managed by an emergency doctor at the accident site. Injury 44(5):611–617PubMedCrossRefGoogle Scholar
  9. 9.
    Hussmann B, Taeger G, Lefering R et al (2011) Lethality and outcome in multiple injured patients after severe abdominal and pelvic trauma. Influence of preclinical volume replacement – an analysis of 604 patients from the trauma registry of the DGU. Unfallchirurg 114(8):705–712PubMedCrossRefGoogle Scholar
  10. 10.
    Kheirabadi BS, Acheson EM, Deguzman R et al (2005) Hemostatic efficacy of two advanced dressings in an aortic hemorrhage model in Swine. J Trauma 59(1):25–35PubMedCrossRefGoogle Scholar
  11. 11.
    Kiraly LN, Differding JA, Enomoto TM et al (2006) Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma 61(1):57–65PubMedCrossRefGoogle Scholar
  12. 12.
    Lakstein D, Blumenfeld A, Sokolov T et al (2003) Tourniquets for hemorrhage control on the battlefield: a 4-year accumulated experience. J Trauma 54(5 Suppl):221–225Google Scholar
  13. 13.
    MacLeod JB, Lynn M, McKenney MG et al (2003) Early coagulopathy predicts mortality in trauma. J Trauma 55(1):39–44PubMedCrossRefGoogle Scholar
  14. 14.
    Maegele M, Lefering R, Yucel N et al (2007) Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 38(3):298–304PubMedCrossRefGoogle Scholar
  15. 15.
    Manley GT, Hemphill JC, Morabito D et al (2000) Cerebral oxygenation during hemorrhagic shock: perils of hyperventilation and the therapeutic potential of hypoventilation. J Trauma 48:1025–1033PubMedCrossRefGoogle Scholar
  16. 16.
    Martini WZ, Dubick MA, Wade CE, Holcomb JB (2007) Evaluation of tris-hydroxymethylaminomethane on reversing coagulation abnormalities caused by acidosis in pigs. Crit Care Med 35(6):1568–1574PubMedCrossRefGoogle Scholar
  17. 17.
    Martini WZ, Dubick MA, Pusateri AE et al (2006) Does bicarbonate correct coagulation function impaired by acidosis in swine? J Trauma 61(1):99–106PubMedCrossRefGoogle Scholar
  18. 18.
    Mutschler M, Nienaber U, Münzberg M et al (2013) Assessment of hypovolaemic shock at scene: is the PHTLS classification of hypovolaemic shock really valid? Emerg Med J 31(1):35-40PubMedCrossRefGoogle Scholar
  19. 19.
    Mutschler M, Nienaber U, Brockamp T et al (2013) Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit Care 17(2):42CrossRefGoogle Scholar
  20. 20.
    Mutschler M, Nienaber U, Münzberg M et al (2013) The Shock Index revisited – a fast guide to transfusion requirement? A retrospective analysis on 21,853 patients derived from the TraumaRegister DGU®. Crit Care 17(4):172CrossRefGoogle Scholar
  21. 21.
    Mutter TC, Ruth CA, Dart AB (2013) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev 7:CD007594PubMedGoogle Scholar
  22. 22.
    Naimer SA, Anat N, Katif G, Rescue Team (2004) Evaluation of techniques for treating the bleeding wound. Injury 35(10):974–979PubMedCrossRefGoogle Scholar
  23. 23.
    Perel P, Roberts I, Ker K (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2:CD000567PubMedGoogle Scholar
  24. 24.
    Perkins JG, Cap AP, Weiss BM et al (2008) Massive transfusion and nonsurgical hemostatic agents. Crit Care Med 36(7 Suppl):325–339CrossRefGoogle Scholar
  25. 25.
    Pusateri AE, Holcomb JB, Kheirabadi BS et al (2006) Making sense of the preclinical literature on advanced hemostatic products. J Trauma 60(3):674–682PubMedCrossRefGoogle Scholar
  26. 26.
    Rehm M (2013) Limited applications for hydroxyethyl starch: background and alternative concepts. Anaesthesist 62(8):644–655PubMedCrossRefGoogle Scholar
  27. 27.
    Rhee P, Koustova E, Alam HB (2003) Searching for the optimal resuscitation method: recommendations for the initial fluid resuscitation of combat casualties. J Trauma 54(5 Suppl):52–62Google Scholar
  28. 28.
    Sorensen B, Fries D (2012) Emerging treatment strategies for trauma-induced coagulopathy. Br J Surg 99(Suppl 1):40–50PubMedCrossRefGoogle Scholar
  29. 29.
    Spahn DR, Bouillon B, Cerny V et al (2013) Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 17(2):76CrossRefGoogle Scholar
  30. 30.
    Valeri CR, Feingold H, Cassidy G et al (1987) Hypothermia-induced reversible platelet dysfunction. Ann Surg 205(2):175–181PubMedCrossRefGoogle Scholar
  31. 31.
    Walcher F, Weinlich M, Conrad G et al (2006) Prehospital ultrasound imaging improves management of abdominal trauma. Br J Surg 93(2):238–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für UnfallchirurgieMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations