Advertisement

Der Unfallchirurg

, Volume 114, Issue 6, pp 485–490 | Cite as

Versorgung pertrochantärer Femurfrakturen

Biomechanische Überlegungen
  • G. Krischak
  • L. Dürselen
  • G. Röderer
Leitthema

Zusammenfassung

Bei der pertrochantären Femurfraktur sind biomechanische Überlegungen von großer Bedeutung. Häufig bestehen begleitend geriatrische Erkrankungen und Osteoporose, die hohe Anforderungen an die Primärstabilität der operativen Versorgung stellen. Bei der instabilen Fraktur (AO/ASIF 31-A2 und -A3) können schon Alltagsbelastungen die kritischen Grenzen überschreiten und das Versagen der Frakturversorgung einleiten. Sowohl intra- als auch extramedulläre Implantate kommen mit Erfolg auch bei instabiler Fraktur zum Einsatz. Verschiedene Variationen in der Verankerung der Schenkelhalsträger und im Design der Implantate sind verfügbar und weisen unterschiedliche Charakteristika in der Primärstabilität auf. Biomechanische Untersuchungen zeigen, wie eine Erhöhung der Stabilität durch Implantate neuerer Generation erreicht wird. Entscheidend für die Stabilität ist jedoch nach wie vor die korrekte Reposition und Operationstechnik. Ergänzende Maßnahmen (z. B. die Augmentation) weisen vielversprechende Ansätze auf, jedoch sind weiterführende Untersuchungen und Weiterentwicklungen erforderlich, um die Primärstabilität der instabilen Fraktur bei osteoporotischer Knochenqualität zu optimieren.

Schlüsselwörter

Pertrochantäre Femurfraktur Biomechanik Osteoporose Implantatversagen Augmentation 

Treatment of peritrochanteric fractures

Biomechanical considerations

Abstract

Biomechanical considerations are relevant in the treatment of peritrochanteric fractures. Concomitant diseases and osteoporosis place high demands on the primary stability of the operative treatment. In the situation of unstable fractures (AO/ASIF 31-A2 and A3), even normal activities of life can easily exceed the critical limits of stability, which can result in implant failure. Both intramedullary and extramedullary implants are used successfully in the treatment of even unstable fractures. Different variations in the implant design and anchorage of the load carrier of the femoral neck are available and may have different biomechanical characteristics. Biomechanical tests show that new developments of implants can increase stability. Nevertheless, accurate reduction and operative technique is essential to ensure uneventful fracture healing. Although some supportive measures are very promising, such as augmentation, further research is required to increase stability in the unstable and osteoporotic fracture situation.

Keywords

Peritrochanteric fracture Biomechanics Osteoporosis Implant failure Augmentation 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Al-Munajjed AA, Hammer J, Mayr E et al (2008) Biomechanical characterisation of osteosyntheses for proximal femur fractures: helical blade versus screw. Stud Health Technol Inform 133:1–10PubMedGoogle Scholar
  2. 2.
    Augat P, Rapp S, Claes L (2002) A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures. J Orthop Trauma 16:311–316PubMedCrossRefGoogle Scholar
  3. 3.
    Baumgärtner MR, Curtin SL, Lindskog DM et al (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064Google Scholar
  4. 4.
    Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871PubMedCrossRefGoogle Scholar
  5. 5.
    Born CT, Karich B, Bauer C et al (2010) Hip screw migration testing: First results for hip screws and helical blades utilizing a new oscillating test method. J Orthop Res 29:760–766PubMedCrossRefGoogle Scholar
  6. 6.
    Curtis MJ, Jinnah RH, Wilson V et al (1994) Proximal femoral fractures: a biomechanical study to compare intramedullary and extramedullary fixation. Injury 25:99–104PubMedCrossRefGoogle Scholar
  7. 7.
    Eberle S, Augat P (2009) Biomechanik der Hüfte und des proximalen Femur. Osteologie 18:78–82Google Scholar
  8. 8.
    Güven M, Yavuz U, Kadioglu B et al (2010) Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw. Orthop Traumatol Surg Res 96:21–27PubMedCrossRefGoogle Scholar
  9. 9.
    Hsueh KK, Fang CK, Chen CM et al (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276PubMedCrossRefGoogle Scholar
  10. 10.
    Im GI, Shin YW, Song YJ (2005) Potentially unstable intertrochanteric fractures. J Orthop Trauma 19:5–9PubMedCrossRefGoogle Scholar
  11. 11.
    Kold S, Rahbek O, Vestermark M et al (2005) Bone compaction enhances fixation of weightbearing titanium implants. Clin Orthop Relat Res 431:138–144PubMedCrossRefGoogle Scholar
  12. 12.
    Kouvidis GK, Sommers MB, Giannoudis PV et al (2009) Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation. J Orthop Surg Res 4:16PubMedCrossRefGoogle Scholar
  13. 13.
    Krischak GD, Augat P, Beck A et al (2007) Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: sliding hip screw and percutaneous compression plate. Clin Biomech (Bristol, Avon) 22:1112–1118Google Scholar
  14. 14.
    Lenich A, Vester H, Nerlich M et al (2010) Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip-Blade vs screw. Injury 41(12):1292–1296PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Y, Tao R, Liu F et al (2010) Mid-term outcomes after intramedullary fixation of peritrochanteric femoral fractures using the new proximal femoral nail antirotation (PFNA). Injury 41:810–817PubMedCrossRefGoogle Scholar
  16. 16.
    Lobo-Escolar A, Joven E, Iglesias D et al (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41:1312–1316PubMedCrossRefGoogle Scholar
  17. 17.
    Lorich DG, Geller DS, Nielson JH (2004) Osteoporotic pertrochanteric hip fractures: management and current controversies. Instr Course Lect 53:441–454PubMedGoogle Scholar
  18. 18.
    Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev CD000093Google Scholar
  19. 19.
    Phillips AT (2009) The femur as a musculo-skeletal construct: a free boundary condition modelling approach. Med Eng Phys 31:673–680PubMedCrossRefGoogle Scholar
  20. 20.
    Roberts CS, Nawab A, Wang M et al (2002) Second generation intramedullary nailing of subtrochanteric femur fractures: a biomechanical study of fracture site motion. J Orthop Trauma 16:231–238PubMedCrossRefGoogle Scholar
  21. 21.
    Vidyadhara S, Rao SK (2007) One and two femoral neck screws with intramedullary nails for unstable trochanteric fractures of femur in the elderly – randomised clinical trial. Injury 38:806–814PubMedCrossRefGoogle Scholar
  22. 22.
    Von der LP, Gisep A, Boner V et al (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24:2230–2237CrossRefGoogle Scholar
  23. 23.
    Wähnert D, Gudushauri P, Schiuma D et al (2010) Does cancellous bone compaction due to insertion of a blade implant influence the cut-out resistance? A biomechanical study. Clin Biomech (Bristol, Avon) 25:1053–1057Google Scholar
  24. 24.
    Wang CJ, Brown CJ, Yettram AL et al (2000) Intramedullary femoral nails: one or two lag screws? A preliminary study. Med Eng Phys 22:613–624PubMedCrossRefGoogle Scholar
  25. 25.
    Windolf M, Braunstein V, Dutoit C et al (2009) Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech (Bristol, Avon) 24:59–64Google Scholar
  26. 26.
    Xu Y, Geng D, Yang H et al (2010) Treatment of unstable proximal femoral fractures: comparison of the proximal femoral nail antirotation and gamma nail 3. Orthopedics 33:473PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Forschungsinstitut für RehabilitationsmedizinZentrum für Muskuloskelettale Forschung, Universität UlmBad WurzachDeutschland
  2. 2.Institut für Unfallchirurgische Forschung und BiomechanikZentrum für Muskuloskelettale Forschung, Universität UlmUlmDeutschland
  3. 3.Klinik für Unfallchirurgie, Hand-, Plastische und Wiederherstellungschirurgie, Zentrum für ChirurgieZentrum für Muskuloskelettale Forschung, Universitätsklinikum UlmUlmDeutschland

Personalised recommendations