Der Unfallchirurg

, Volume 114, Issue 5, pp 424–430 | Cite as

Vergleich der lokalen Spongiosadichte osteoporotischer und nichtosteoporotischer distaler Radii

  • V. Braunstein
  • S. Duda
  • C.M. Sprecher
  • V. Brighenti
  • R. Arora
  • A. Tami
  • M. Lutz
  • S. Milz
Originalien

Zusammenfassung

Hintergrund

Um eine gute Fixation der Osteosynthesematerialien im distalen Radius zu erreichen, ist die Kenntnis der lokalen Spongiosaverteilung essenziell.

Material und Methoden

Mittels quantitativer Computertomographie (qCT) wurden 12 distale Radii in 2 Gruppen eingeteilt (gute bzw. schlechte Knochenqualität), um anschließend hochauflösende CT-Scans anzufertigen. Zwischen 1 und 40 mm Entfernung zum Processus styloideus radii wurden an 13 Stellen CT-Schnittbilder erstellt, in 4 Quadranten unterteilt und die Spongiosadichte bestimmt.

Ergebnisse

In beiden Gruppen war die Spongiosadichte gelenknah am höchsten. Es wurde ein Spongiosadichteabfall in Richtung Metaphyse festgestellt. Beim Vergleich der ulnaren mit den radialen Quadranten zeigten sich gelenknahe signifikante Unterschiede. In beiden Gruppen ergab sich beim Vergleich der palmaren mit den dorsalen Quadranten ein nahezu identischer Kurvenverlauf.

Schlussfolgerung

Beim Vergleich distaler Radii mit guter und schlechter Knochenqualität kam es zu einem homogenen Abfall der Knochendichte. Beim Vergleich der spongiösen Knochendichte innerhalb der jeweiligen Gruppen (radial vs. ulnar und palmar vs. dorsal) wurden v. a. im gelenknahen Bereich signifikante Unterschiede festgestellt.

Schlüsselwörter

Distaler Radius Spongiosadichte Lokale Unterschiede Osteoporose 

Comparison of regional distribution of cancellous bone in osteoporotic and non-osteoporotic distal radii

Abstract

Background

In cases of distal radius fractures information about the regional distribution of cancellous bone is essential for adequate fixation of osteosynthesis material.

Materials and methods

Using quantitative computed tomography (qCT) measurements 12 distal radii were divided into 2 groups (good and bad bone quality). High-resolution CT scans were obtained at 13 locations (1-40 mm distant from radial styloid processes). The resulting cross-sections were divided into 4 quadrants and the cancellous bone density was assessed in each of them.

Results

In both groups regional cancellous bone density was highest immediately beneath the joint surface and decreased towards the metaphyseal region. Comparing the radial with the ulnar quadrants significant differences were found between distances of 4 mm and 12 mm from the joint surface in both groups. The comparison of the palmar and the dorsal quadrants resulted in an almost identical cancellous bone distribution.

Conclusion

In osteoporotic distal radii cancellous bone density decrease occurs homogeneously in all regions and is least pronounced beneath the joint surface. Comparing the regional cancellous bone density (radial versus ulnar and palmar versus dorsal) significant differences were mainly found near the joint surface in both groups.

Keywords

Distal radius Cancellous bone density Local differences Osteoporosis 

Literatur

  1. 1.
    Anderson DD, Deshpande BR, Daniel TE et al (2005) A three-dimensional finite element model of the radiocarpal joint: distal radius fracture step-off and stress transfer. Iowa Orthop J 25:108–117PubMedGoogle Scholar
  2. 2.
    Augat P, Gordon CL, Lang TF et al (1998) Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Biol 43:2873–2883PubMedCrossRefGoogle Scholar
  3. 3.
    Bartl R (2003) The management of manifest osteoporosis – a new responsibility for the accident specialist. Unfallchirurg 106:525PubMedCrossRefGoogle Scholar
  4. 4.
    Bartl R, Bartl C, Mutschler W (2003) Diagnosis and therapy of osteoporosis. Strategy for effective treatment after fragility fractures. Unfallchirurg 106:526–541PubMedCrossRefGoogle Scholar
  5. 5.
    Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40:767–774PubMedCrossRefGoogle Scholar
  6. 6.
    Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRefGoogle Scholar
  7. 7.
    Grewal R, Perey B, Wilmink M et al (2005) A randomized prospective study on the treatment of intra-articular distal radius fractures: open reduction and internal fixation with dorsal plating versus mini open reduction, percutaneous fixation and external fixation. J Hand Surg [Am] 30:764–772Google Scholar
  8. 8.
    Haussler B, Gothe H, Gol D et al (2007) Epidemiology, treatment and costs of osteoporosis in Germany – the BoneEVA Study. Osteoporos Int 18:77–84PubMedCrossRefGoogle Scholar
  9. 9.
    Kapoor H, Agarwal A, Dhaon BK (2000) Displaced intra-articular fractures of distal radius: a comparative evaluation of results following closed reduction, external fixation and open reduction with internal fixation. Injury 31:75–79PubMedCrossRefGoogle Scholar
  10. 10.
    Koh S, Andersen CR, Buford WL Jr et al (2006) Anatomy of the distal brachioradialis and its potential relationship to distal radius fracture. J Hand Surg [Am] 31:2–8Google Scholar
  11. 11.
    Kreder HJ, Hanel DP, Agel J et al (2005) Indirect reduction and percutaneous fixation versus open reduction and internal fixation for displaced intra-articular fractures of the distal radius: a randomised, controlled trial. J Bone Joint Surg [Br] 87:829–836Google Scholar
  12. 12.
    Lauritzen JB, Schwarz P, Lund B et al (1993) Changing incidence and residual lifetime risk of common osteoporosis-related fractures. Osteoporos Int 3:127–132PubMedCrossRefGoogle Scholar
  13. 13.
    Letsch R, Infanger M, Schmidt J et al (2003) Surgical treatment of fractures of the distal radius with plates: a comparison of palmar and dorsal plate position. Arch Orthop Trauma Surg 123:333–339PubMedCrossRefGoogle Scholar
  14. 14.
    Leung F, Tu YK, Chew WY et al (2008) Comparison of external and percutaneous pin fixation with plate fixation for intra-articular distal radial fractures. A randomized study. J Bone Joint Surg [Am] 90:16–22Google Scholar
  15. 15.
    Lill H, Hepp P, Gowin W et al (2002) Age- and gender-related distribution of bone mineral density and mechanical properties of the proximal humerus. Rofo 174:1544–1550PubMedGoogle Scholar
  16. 16.
    Lochmuller EM, Matsuura M, Bauer J et al (2008) Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J Bone Miner Res 23:1964–1973PubMedCrossRefGoogle Scholar
  17. 17.
    Lohmann R, Haid K, Stöckle U et al (2007) Epidemiology and perspectives in traumatology of the elderly. Unfallchirurg 110:553–560PubMedCrossRefGoogle Scholar
  18. 18.
    Mueller TL, Stauber M, Kohler T et al (2009) Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone 44:364–371PubMedCrossRefGoogle Scholar
  19. 19.
    Rein S, Schikore H, Schneiders W et al (2007) Results of dorsal or volar plate fixation of AO type C3 distal radius fractures: a retrospective study. J Hand Surg [Am] 32:954–961Google Scholar
  20. 20.
    Ruch DS, Papadonikolakis A (2006) Resection of the scaphoid distal pole for symptomatic scaphoid nonunion after failed previous surgical treatment. J Hand Surg [Am] 31:588–593Google Scholar
  21. 21.
    Singer BR, McLauchlan GJ, Robinson CM et al (1998) Epidemiology of fractures in 15,000 adults: the influence of age and gender. J Bone Joint Surg [Br] 80:243–248Google Scholar
  22. 22.
    Sornay-Rendu E, Boutroy S, Munoz F et al (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY Study. J Bone Miner Res 22:425–433PubMedCrossRefGoogle Scholar
  23. 23.
    Vico L, Zouch M, Amirouche A et al (2008) High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res 23:1741–1750PubMedCrossRefGoogle Scholar
  24. 24.
    Vogel T, Kampmann P, Burklein D et al (2008) Reality of treatment of osteoporotic fractures in German trauma departments: a contribution for outcome research. Unfallchirurg 111:869–877PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • V. Braunstein
    • 1
    • 2
  • S. Duda
    • 1
    • 3
  • C.M. Sprecher
    • 1
  • V. Brighenti
    • 1
  • R. Arora
    • 3
  • A. Tami
    • 1
  • M. Lutz
    • 3
  • S. Milz
    • 1
  1. 1.AO Research InstituteAO FoundationDavosSchweiz
  2. 2.Chirurgische Klinik und PoliklinikKlinikum der Ludwig-Maximilians-Universität, Campus InnenstadtMünchenDeutschland
  3. 3.Abteilung Traumachirurgie und SportmedizinMedizinische Universität InnsbruckInnsbruckÖsterreich

Personalised recommendations