Der Unfallchirurg

, Volume 112, Issue 1, pp 6–14 | Cite as

Externe Supportiva zur Förderung der Frakturheilung

Welche Rolle spielt Ultraschall?
Leitthema

Zusammenfassung

Von den externen Hilfen zur Förderung der Frakturheilung scheint sich niedrigintensiver gepulster Ultraschall als sicheres, kosteneffektives und verlässliches Verfahren zu erweisen. Verschiedene experimentelle Studien haben sowohl mit In-vivo- als auch mit In-vitro-Arbeiten zur Aufklärung möglicher Wirkungsmechanismen des Ultraschalls beigetragen. Darüber hinaus existiert eine Reihe prospektiver, randomisierter, doppelblinder, placebokontrollierter Studien, die die klinische Wirksamkeit niedrigintensiven, gepulsten Ultraschalls belegen. In diesem Artikel werden diese Studien zusammengefasst.

Schlüsselwörter

Ultraschall Knochenstimulator Frakturheilung Akute Fraktur Kallus 

External adjuncts to enhance fracture healing

What is the role of ultrasound?

Abstract

Current methods of fracture care use various adjuncts aimed at decreasing the time to fracture union and improving fracture union rates. Among the most commonly used modalities, low-intensity pulsed ultrasound is emerging as a safe, cost-effective, and reliable treatment for both fresh fractures and fracture nonunions. Both in vivo and in vitro basic science studies have helped elucidate potential mechanisms of ultrasound action, and a number of prospective, randomized, double-blind, placebo-controlled trials have demonstrated the clinical efficacy of low-intensity pulsed ultrasound. This article reviews the evidence for the use of low-intensity pulsed ultrasound in fracture care.

Keywords

Ultrasound Bone stimulator Fracture healing Acute fracture Callus 

Literatur

  1. 1.
    Azuma Y, Ito M, Harada Y et al (2001) Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res 16:671–680PubMedCrossRefGoogle Scholar
  2. 2.
    Brand JC, Brindle T, Nyland J et al (1999) Does pulsed low intensity ultrasound allow early return to normal activities when treating stress fractures? A review of one tarsal avicular and eight tibial stress fractures. Iowa Orthop J 19:26–30PubMedGoogle Scholar
  3. 3.
    Busse JW, Bhandari M, Kulkarni AV, Tunks E (2002) The effect of low-intensity ultrasound therapy on time to fracture healing: a meta-analysis. CMAJ 166:437–441PubMedGoogle Scholar
  4. 4.
    Cook SD, Ryaby JP, McCabe J et al (1997) Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop 337:198–207PubMedCrossRefGoogle Scholar
  5. 5.
    Cook SD, Salkeld SL, Popich Patron L et al (2001) Low intensity pulsed ultrasound improves spinal fusion. Spine J 1:246–254PubMedCrossRefGoogle Scholar
  6. 6.
    Dehne E, Dehne E, Metz CW et al (1961) Non operative treatment of the fractured tibia by immediate weight bearing. J Trauma 1:514–535PubMedCrossRefGoogle Scholar
  7. 7.
    Duarte LR, Xavier CA, Choffie M (1966) Review of nonunions treated by pulsed low-intensity ultrasound. Int Soc Orthop Surg Traumatol 20th World Congress 111:PDS30Google Scholar
  8. 8.
    Einhorn TA (1995) Current concepts review: enhancement of fracture healing. J Bone Joint Surg Am 77A:940–956Google Scholar
  9. 9.
    Emami A, Larsson A, Petren-Mallmin M, Larsson S (1999) Serum bone markers after intramedullary fixed tibial fractures. Clin Orthop 368:220–229PubMedGoogle Scholar
  10. 10.
    Emami A, Petren-Mallmin M, Larssom S (1999) No effect of lowintensity ultrasound on healing time of intramedullary fixed tibial fractures. J Orthop Trauma 13:252–257PubMedCrossRefGoogle Scholar
  11. 11.
    Gebauer D, Mayr E, Orthner E, Ryaby JP (2005) Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol 31:1391–1402PubMedCrossRefGoogle Scholar
  12. 12.
    Glazer PA, Heilmann MR, Lotz JC, Bradford DS (1998) Use of ultrasound in spinal arthrodesis: a rabbit model. Spine 23:1142–1148PubMedCrossRefGoogle Scholar
  13. 13.
    Hadjiargyrou M, McLeod K, Ryaby JP, Rubin C (1998) Enhancement of fracture healing by low intensity ultrasound. Clin Orthop 355S:S216–S229CrossRefGoogle Scholar
  14. 14.
    Haines JF, Williams EJ, Davies DR (1984) Is conservative treatment of displaced tibial fractures justified? J Bone Joint Surg Am 66:84–88Google Scholar
  15. 15.
    Heckman JD, Ryaby JP, McCabe J et al (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76:26–34PubMedGoogle Scholar
  16. 16.
    Heckman JD, Sarasohn-Kahn J (1997) The economics of treating tibia fractures: the cost of delayed unions. Bull Hosp Jt Dis 56:63–72PubMedGoogle Scholar
  17. 17.
    Jensen J (1998) Stress fracture in the world class athlete: a case study. Med Sci Sports Exerc 30:7837Google Scholar
  18. 18.
    Kamakura T, Matsuda K, Kumamoto Y (1995) Acoustic pressure streaming induced in focused Gausian beams. J Acoust Soc Am 97:2740–2746CrossRefGoogle Scholar
  19. 19.
    Korstjens CM, Nolte PA, Burger EH et al (2004) Stimulation of bone cell differentiation by low-intensity ultrasound – a gistomorphometric in vitro study. J Orthop Res 22:495–500PubMedCrossRefGoogle Scholar
  20. 20.
    Kristiansen TK, Ryaby JP, McCabe J et al (1997) Accelerated healing of distal radial fractures with the use of specific, lowintensity ultrasound. J Bone Joint Surg Am 79:961–973PubMedGoogle Scholar
  21. 21.
    Leung KS, Lee WS, Tsui HF et al (2004) Complex tibial fracture outcomes following treatment with low intensity pulsed ultrasound. Ultrasound Med Biol 30:389–395PubMedCrossRefGoogle Scholar
  22. 22.
    Malizos KN, Hantes ME, Protopappas V, Papachristos A (2006) Lowintensity pulsed ultrasound for bone healing: an overview. Injury 37S:S56–S62CrossRefGoogle Scholar
  23. 23.
    Mayr E, Frankel V, Ruter A (2000) Ultrasound – an alternative healing method for nonunions? Arch Orthop Trauma Surg 120:1–8PubMedGoogle Scholar
  24. 24.
    Mayr E, Laule A, Suger G et al (2001) Radiographic results of callus distraction aided by pulsed low-intensity ultrasound. J Orthop Trauma 15:407–414PubMedCrossRefGoogle Scholar
  25. 25.
    Mayr E, Rudzki MM, Rudski M et al (2000) Beschleunigt niedrig intensiver, gepulster Ultraschall die Heilung von Skaphoidfrakturen? Handchir Plast Chir 32:115–122CrossRefGoogle Scholar
  26. 26.
    Naruse K, Miyauchi A, Itoman M, Mikuni-Takagaki Y (2003) Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound. J Bone Miner Res 18:360–369PubMedCrossRefGoogle Scholar
  27. 27.
    Nolte PA, van der Krans A, Patka P et al (2001) Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma 51:693–703PubMedCrossRefGoogle Scholar
  28. 28.
    Ogden JA, Alvarez RG, Levitt R, Marlow M (2001) Shock wave therapy (orthotripsy) in musculoskeletal disorders. Clin Orthop 387:22–40PubMedCrossRefGoogle Scholar
  29. 29.
    Parvizi J, Parpura V, Kinnick RR et al (1997) Low intensity ultrasound increases intracellular concentration of calcium in chondrocytes. Trans Orthop Res Soc 22:465Google Scholar
  30. 30.
    Puno RM, Puno RM, Teynor JT et al (1986) Critical analysis of results of treatment of 201 tibial shaft fractures. Clin Orthop 212:113–213PubMedGoogle Scholar
  31. 31.
    Rawool NM, Goldberg BB, Forsberg F et al (1997) Doppler assessment of vascular changes during fracture treatment with low intensity ultrasound. Trans 83rd Radiol Soc North Am 83:421Google Scholar
  32. 32.
    Reher P, Elbeshir el-NI, Harvey W et al (1997) The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol 23:1251–1258PubMedCrossRefGoogle Scholar
  33. 33.
    Reimer BL, DiChristina DG, Cooper A et al (1995) Nonreamed nailing of tibial diaphyseal fractures in blunt polytrauma patients. J Orthop Trauma 9:66–75CrossRefGoogle Scholar
  34. 34.
    Romano CL, Messina JC, Meani E (1999) Low-intensity pulsed ultrasound for the treatment of septic pseudoarthrosis. Quaderni di Infezione Osteoarticulari:S561Google Scholar
  35. 35.
    Rompe JD, Rosendahl T, Schollner C, Theis C (2001) High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop 387:102–111PubMedCrossRefGoogle Scholar
  36. 36.
    Rubin C, Bolander M, Ryaby JP, Hadjiargyrou M (2001) The use of low-intensity ultrasound to accelerate the healing of fractures. J Bone Joint Surg Am 83:259–270PubMedCrossRefGoogle Scholar
  37. 37.
    Ryaby JT, Bachner EJ, Bendo J et al (1989) Low intensity pulsed ultrasound increases calcium incorporation in both differentiating cartilage and bone cell cultures. Trans Orthop Res Soc 14:15Google Scholar
  38. 38.
    Ryaby JT, Matthew J, Duarte-Alves P (1992) Low intensity pulsed ultrasound affects adenylate cyclase activity and TGF-beta synthesis in osteoblastic cells. Trans Orthop Res Soc 17:590Google Scholar
  39. 39.
    Schaden W, Fischer A, Sailler A (2001) Extracorporal shock wave therapy of nonunion or delayed osseous union. Clin Orthop 387:90–94PubMedCrossRefGoogle Scholar
  40. 40.
    Shimazaki A, Inui K, Azuma Y et al (2000) Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits. J Bone Joint Surg Br 82:1077–1082PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Division of Orthopaedic TraumatologyUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations