Der Unfallchirurg

, Volume 110, Issue 11, pp 931–938 | Cite as

Therapieerfolg bei atrophen Tibiaschaftpseudarthrosen

Bone Morphogenetic Protein 7 (BMP 7) versus autologe Spongiosaplastik
  • G. Zimmermann
  • U. Müller
  • C. Löffler
  • A. Wentzensen
  • A. Moghaddam
Originalien

Zusammenfassung

Je nach Frakturtyp und Lokalisation beträgt die Pseudarthrosenrate bei Tibiaschaftfrakturen 10% bis 40%. Alternativ zur Spongiosaplastik kann seit 2001 der Knochenwachstumsfaktor Bone Morphogenetic Protein 7 (BMP 7, Osigraft®) bei Revisionen eingesetzt werden. Ziel dieser Studie war es, die Effizienz der ersten Spongiosaplastik gegenüber BMP 7 bei verzögerter Frakturheilung zu bestimmen. Von 01/1995 bis 12/2002 erhielten 82 Patienten (Gruppe 1) bei verzögerter Frakturheilung als erste Therapiemaßnahme eine Eigenknochentransplantation. Zum Vergleich (Gruppe 2) dienten 26 Patienten, bei denen durchschnittlich nach 4 erfolglosen Revisionen im Zeitraum von 05/2002 bis 06/2005 BMP 7 lokal implantiert wurde. Als erfolgreiche Heilung wurde eine radiologisch erkennbare Durchbauung der Fraktur gewertet. In Gruppe 1 mit alleiniger Eigenknochentransplantation, wiesen 24 Patienten (28%) nach 4 Monaten und in Gruppe 2 mit BMP-7-Implantation 2 Patienten (8%) keine knöcherne Durchbauung auf (p=0,025). Die BMP-7-Gruppe zeigte trotz eines ungünstiger selektierten Patientenkollektivs eine signifikant höhere Heilungsrate gegenüber der Gruppe mit Eigenspongiosatransplantation.

Schlüsselwörter

Bone Morphogenetic Protein 7 Knochenwachstumsfaktoren Spongiosaplastik Verzögerte Frakturheilung Tibiafraktur 

Therapeutic outcome in tibial pseudarthrosis

Bone morphogenetic protein 7 (BMP-7) versus autologous bone grafting for tibial fractures

Abstract

Depending on the type and localisation, nonunions of tibial fractures will occur in 10–40% of cases. Bone morphogenetic protein 7 (BMP-7; Osigraft), a recombinant bone growth factor, can be implanted locally as an alternative to autologous bone grafting. The objective of our study was to compare the efficiency of the two procedures. From January 1995 to December 2002, 82 patients (group 1) with delayed union of a tibial fracture received autologous bone grafting as their first procedure. To compare their results with the efficiency of BMP-7, between May 2002 and June 2005 we followed up on 26 patients (group 2) who had local implantation of BMP-7 after having had, on average, four surgical procedures. Healing was considered successful if x-rays showed bony consolidation and if no further procedure was necessary. Group 1 had no signs of consolidation in 24 cases (28%), whereas group 2 had only two (8%) such patients (p=0.025). The BMP-7 group showed a significantly higher success rate compared with patients with autologous bone grafting, despite the fact that the BMP-7 group contained more complicated cases.

Keywords

Bone morphogenetic protein 7 Bone growth factor Autologous bone graft Delayed union Tibia fracture 

Literatur

  1. 1.
    Allan HL, Wase A, Bear WT (1980) Indomethacin and aspirin: Effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Acta Orthop Scand 51: 595–600Google Scholar
  2. 2.
    Augat P, Merk J, Ingnatius A et al. (1996) Early, full weight-bearing with flexible fixation delays fracture healing. Clin Orthop 328: 194–202CrossRefPubMedGoogle Scholar
  3. 3.
    Brinker MR, Bailey DE Jr (1997) Fracture healing in tibia fractures with an associated vascular injury. J Trauma 42: 11–19PubMedGoogle Scholar
  4. 4.
    Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on success of fracture healing. J Orthop Res 15: 577–584CrossRefPubMedGoogle Scholar
  5. 5.
    Cook SD, Ryaby JB, McCabe J et al. (1997) Acceleration of tibial and distal radius fracture healing in patients who smokes. Clin Orthop 337: 198–207CrossRefPubMedGoogle Scholar
  6. 6.
    Cruess RL, Sakai T (1972) The effect of cortisone upon synthesis rates of some components of rat bone matrix. Clin Orthop 86: 253–259CrossRefPubMedGoogle Scholar
  7. 7.
    Daftari TK, Whitesides TE, Heller JG et al. (1994) Nicotine on the revascularization of bone graft: An experimental study in rabbits. Spine 19: 904–911CrossRefPubMedGoogle Scholar
  8. 8.
    Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop (Suppl) 355: 7–21Google Scholar
  9. 9.
    Einhorn TA, Bonnarens F, Burnstein AH (1986) The contributions of dietary protein and mineral to the healing of experimental fractures. An biomechanical study. J Bone Joint Surg Am 68: 1389–1395PubMedGoogle Scholar
  10. 10.
    Esterhai JL, Brighton CT, Heppenstall RB et al. (1986) Nonunion of the humerus: Clinical, roentgenographic, scintigraphic and response characteristics to treatment with constant direct current simulation of osteogenesis. Clin Orthop 211: 228–234PubMedGoogle Scholar
  11. 11.
    Foster RJ, Dixon GL, Bach AW et al. (1985) Internal fixation of fractures an nonunions of the humeral shaft. J Bone Joint Surg Am 67: 857–864PubMedGoogle Scholar
  12. 12.
    Friedlaender GE, Perry CR, Cole JD et al. (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am (Suppl 1) 83: S151–S158Google Scholar
  13. 13.
    Gelberman RH, Menon J (1980) The vascularity of the scaphoid bone. J Hand Surg Am 5: 508–513PubMedGoogle Scholar
  14. 14.
    Giannoudis PV, Tzioupis C (2005) Clinical applications of BMP-7. The UK perspective. Injury (Suppl 3) 36: S47–S50Google Scholar
  15. 15.
    Hayda RA, Brighton CT, Esterhai JL (1998) Pathophysiology of delayed healing. Clin Orthop (Suppl) 355: 31–40Google Scholar
  16. 16.
    Healy WL, White GM, Mick CA et al. (1987) Nonunion of the humeral shaft. Clin Orthop 219: 206–213PubMedGoogle Scholar
  17. 17.
    Henle P, Zimmermann G, Weiss S (2005) Matrix metalloproteinases and failed fracture healing. Bone 37: 791–798CrossRefPubMedGoogle Scholar
  18. 18.
    Hukkanen M, Konttinen YT, Santavirta A et al. (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54: 969–979CrossRefPubMedGoogle Scholar
  19. 19.
    Kwiatkowski TC, Hanley JEN, Ramp WK (1996) Cigarette smoking and its orthopaedic consequences. Am J Orthop 25: 590–596PubMedGoogle Scholar
  20. 20.
    Larson RL, Sukkivan CR, Janes JM (1961) Trauma surgery and the circulation of the talus: What are the risks of avascular necrosis? J Trauma 1: 13–21CrossRefGoogle Scholar
  21. 21.
    Littenberg B, Weinstein LP, McCarren M et al. (1998) Closed fractures of the tibial shaft. A meta-analysis of three methods of treatment. J Bone Joint Surg Am 80: 174–183PubMedGoogle Scholar
  22. 22.
    Macey LR, Kana SM, Jingushi S et al. (1989) Defects of early fracture healing in experimental diabetes. J Bone Joint Surg Am 71: 722–733PubMedGoogle Scholar
  23. 23.
    Nelson GE, Kelly PJ, Peterson F et al. (1960) Blood supply of the human tibia. J Bone Joint Surg Am 42: 625–635PubMedGoogle Scholar
  24. 24.
    Oestern HJ (1997) Die gesundheitspolitische Bedeutung der Unfallchirurgie in Deutschland und Ihre Auswirkung auf Gesellschaft und Wirtschaft. In: Oestern HJ, Probst J (Hrsg) Unfallchirurgie in Deutschland. Springer, Berlin Heidelberg New York Tokio, S 63–79Google Scholar
  25. 25.
    Rothman RH, Klemek JS, Toton JJ (1971) The effect of iron deficiency anaemia on fracture healing. Clin Orthop 77: 276–283PubMedGoogle Scholar
  26. 26.
    Spector JA, Mehrara BJ, Greenwald JA et al. (2000) Osteoblast expression of vascular endothelial growth factor is modulated by the extracellular mircroenvirement. Am J Physiol Cell Physiol 280: 72–80Google Scholar
  27. 27.
    Sprague S, Bhandari M (2002) An economic evaluation of early versus delayed operative treatment in patients with closed tibial shaft fractures. Arch Orthop Trauma Surg 122: 315–323PubMedGoogle Scholar
  28. 28.
    Stinchfield FE, Sankaran B, Samilson R (1956) The effect of anticoagulant therapy on bone repair. J Bone Joint Surg Am 38: 270–282PubMedGoogle Scholar
  29. 29.
    Tonnensen PA, Heerfordt J, Pers M (1975) 150 open fractures of the tibial shaft: The relation between necrosis of the skin and delayed union. Acta Orthop Scand 46: 823–835CrossRefGoogle Scholar
  30. 30.
    Uhthoff HK, Rahn BA (1981) Healing patterns of metaphyseal fractures. Clin Orthop 160: 295–303PubMedGoogle Scholar
  31. 31.
    Walsh WR, Sherman P, Howlett CR et al. (1997) Fracture healing in the rat osteopenia model. Clin Orthop 342: 218–227PubMedGoogle Scholar
  32. 32.
    Watson-Jones R (1955) Fractures and joint injuries. Churchill Livingstone, EdinburghGoogle Scholar
  33. 33.
    Weiss S, Zimmermann G, Baumgart R et al. (2005) Systemic regulation of angiogenesis and matrix degradation in bone regeneration–distraction osteogenesis compared to rigid fracture healing. Bone 37: 781–790CrossRefPubMedGoogle Scholar
  34. 34.
    Zimmermann G, Henle P, Kusswetter M et al. (2005) TGF-β1 as a marker of delayed fracture healing. Bone 36: 779–785CrossRefPubMedGoogle Scholar
  35. 35.
    Zimmermann G, Moghaddam A, Wagner C et al. (2006) Clinical experience with bone morphogenetic protein 7 (BMP 7) in nonunions of long bones. Unfallchirurg 109: 528–537CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • G. Zimmermann
    • 1
  • U. Müller
    • 1
  • C. Löffler
  • A. Wentzensen
    • 1
  • A. Moghaddam
    • 1
  1. 1.Berufsgenossenschaftliche Unfallklinik Ludwigshafen, Klinik für Unfallchirurgie und OrthopädieUnfallchirurgische Klinik an der Universität HeidelbergLudwigshafenDeutschland

Personalised recommendations