Advertisement

Darmmikrobiom und chronisch-entzündliche Darmerkrankungen

  • T. SchwerdEmail author
  • S. Koletzko
Leitthemen
  • 16 Downloads

Zusammenfassung

Das Darmmikrobiom steht im Zusammenhang mit der Entstehung und dem Verlauf einer chronisch-entzündlichen Darmerkrankung (CED). Diese Zusammenhänge sind bisher aber nur schlecht verstanden. Das Mikrobiom bei bestehender CED ist in seiner Zusammensetzung und Funktion gestört; ein Zustand, der als Dysbiose bezeichnet wird. Die Veränderungen im Mikrobiom können als diagnostischer und prädiktiver Biomarker nützlich sein. Eine therapeutische Modifikation der mikrobiellen Dysbiose (z. B. durch Ernährung, Antibiotika oder Transfer von fäkalem Material [„fecal microbiota transplantation“, FMT]) könnte eine neue Behandlungsstrategie für CED-Patienten darstellen. Obwohl die FMT eine effektive Therapie rezidivierender Clostridium-difficile-Infektionen darstellt, ist ihr Erfolg zur Korrektur einer CED-assoziierten Dysbiose bisher wenig überzeugend und von variablem Patientenansprechen geprägt.

Schlüsselwörter

Dysbiose Biomarker Ernährung Fäkaler Mikrobentransfer Chronisch-entzündliche Darmerkrankungen 

Intestinal microbiome and inflammatory bowel disease

Abstract

The gut microbiota is thought to influence the development and progression of chronic inflammatory bowel disease (IBD) but the mechanisms are only partly understood. In IBD, intestinal dysbiosis occurs that is characterized by altered structure and function of the microbial community. These microbiota changes can serve as diagnostic and predictive biomarkers. A therapeutic modification of gut dysbiosis, e. g. by diet, antibiotics or fecal microbiota transplantation (FMT) could be a novel treatment strategy in patients with IBD. Although FMT is a highly effective treatment for recurrent Clostridium difficile infections, the efficacy of FMT bacteriotherapy for treating IBD-associated microbial dysbiosis is so far not very convincing with a high variability in patient response.

Keywords

Dysbiosis Biomarker Nutrition Fecal microbiota transplantation Chronic inflammatory bowel disease 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Schwerd erhält Forschungsgelder von der DFG und vom The Leona M. and Harry B. Helmsley Charitable Trust. Er erhielt Sprecher- bzw. Autorenhonorar von MSD und Falk Pharma. S. Koletzko erhielt Forschungsgelder von Mead Johnson, Nestle-Nutrition und BioGaia. Sie erhielt Sprecher-, Autoren- oder Beratungshonorare von Abbvie, Danone, Janssen, Hipp, Menarini, Nestle Nutrition, Vifor, Boehringer Ingelheim, Biocodex, ThermoFischer und Shire.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Wittig R et al (2019) Pediatric chronic inflammatory bowel disease in a German statutory health INSURANCE—Incidence rates from 2009 to 2012. J Pediatr Gastroenterol Nutr 68(2):244–250PubMedGoogle Scholar
  2. 2.
    D’Souza S et al (2008) Dietary patterns and risk for Crohn’s disease in children. Inflamm Bowel Dis 14(3):367–373PubMedGoogle Scholar
  3. 3.
    Jakobsen C et al (2013) Environmental factors and risk of developing paediatric inflammatory bowel disease—A population based study 2007–2009. J Crohns Colitis 7(1):79–88PubMedGoogle Scholar
  4. 4.
    Hou JK, Abraham B, El-Serag H (2011) Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. Am J Gastroenterol 106(4):563–573PubMedGoogle Scholar
  5. 5.
    Ng SC et al (2018) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 390(10114):2769–2778PubMedGoogle Scholar
  6. 6.
    Kaplan GG, Ng SC (2017) Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology 152(2):313–321.e2PubMedGoogle Scholar
  7. 7.
    Tilg H, Moschen AR (2015) Food, immunity, and the microbiome. Gastroenterology 148(6):1107–1119PubMedGoogle Scholar
  8. 8.
    Kronman MP et al (2012) Antibiotic exposure and IBD development among children: A population-based cohort study. Pediatr Electron Pages 130(4):e794–e803Google Scholar
  9. 9.
    Xu L et al (2017) Systematic review with meta-analysis: Breastfeeding and the risk of Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther 46(9):780–789PubMedPubMedCentralGoogle Scholar
  10. 10.
    Jostins L et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124PubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu JZ et al (2015) Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47(9):979–986PubMedPubMedCentralGoogle Scholar
  12. 12.
    Schwerd T, Uhlig HH (2017) Chronisch-entzündliche Darmerkrankung und Immundefekte. Monatsschr Kinderheilkd 165(12):1092–1101Google Scholar
  13. 13.
    Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368PubMedGoogle Scholar
  14. 14.
    Rutgeerts P et al (1991) Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338(8770):771–774PubMedGoogle Scholar
  15. 15.
    D’Haens GR et al (1998) Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114(2):262–267PubMedGoogle Scholar
  16. 16.
    Janowitz HD, Croen EC, Sachar DB (1998) The role of the fecal stream in Crohn’s disease: An historical and analytic review. Inflamm Bowel Dis 4(1):29–39PubMedGoogle Scholar
  17. 17.
    Khan KJ et al (2011) Antibiotic therapy in inflammatory bowel disease: A systematic review and meta-analysis. Am J Gastroenterol 106(4):661–673PubMedGoogle Scholar
  18. 18.
    Ni J et al (2017) Gut microbiota and IBD: Causation or correlation? Nat Rev Gastroenterol Hepatol 14(10):573–584PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gevers D et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15(3):382–392PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wright EK et al (2015) Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: A systematic review. Inflamm Bowel Dis 21(6):1219–1228PubMedPubMedCentralGoogle Scholar
  21. 21.
    Joossens M et al (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60(5):631–637PubMedGoogle Scholar
  22. 22.
    Li J et al (2015) Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 21(1):139–153PubMedGoogle Scholar
  23. 23.
    Pascal V et al (2017) A microbial signature for Crohn’s disease. Gut 66(5):813–822PubMedPubMedCentralGoogle Scholar
  24. 24.
    Vich Vila A et al (2018) Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 10(472):eaap8914.  https://doi.org/10.1126/scitranslmed.aap8914 PubMedGoogle Scholar
  25. 25.
    Ananthakrishnan AN et al (2017) Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21(5):603–610.e3PubMedPubMedCentralGoogle Scholar
  26. 26.
    Doherty MK et al (2018) Fecal microbiota signatures are associated with response to ustekinumab therapy among Crohn’s disease patients. mBio.  https://doi.org/10.1128/mBio.02120-17 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Schaubeck M et al (2016) Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65(2):225–237PubMedGoogle Scholar
  28. 28.
    Davidovics ZH et al (2019) Fecal microbiota transplantation for recurrent Clostridium difficile infection and other conditions in children: A joint position paper from the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 68(1):130–143PubMedGoogle Scholar
  29. 29.
    Kelly CR et al (2015) Update on fecal microbiota transplantation 2015: Indications, methodologies, mechanisms, and outlook. Gastroenterology 149(1):223–237PubMedPubMedCentralGoogle Scholar
  30. 30.
    Paramsothy S et al (2017) Faecal microbiota transplantation for inflammatory bowel disease: A systematic review and meta-analysis. J Crohns Colitis 11(10):1180–1199PubMedGoogle Scholar
  31. 31.
    Costello SP et al (2019) Effect of fecal microbiota transplantation on 8‑week remission in patients with ulcerative colitis: A randomized clinical trial. JAMA 321(2):156–164PubMedGoogle Scholar
  32. 32.
    Paramsothy S et al (2017) Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: A randomised placebo-controlled trial. Lancet 389(10075):1218–1228Google Scholar
  33. 33.
    Rossen NG et al (2015) Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149(1):110–118.e4PubMedGoogle Scholar
  34. 34.
    Moayyedi P et al (2015) Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149(1):102–109.e6PubMedGoogle Scholar
  35. 35.
    Costello SP et al (2017) Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment Pharmacol Ther 46(3):213–224PubMedGoogle Scholar
  36. 36.
    Hourigan SK, Oliva-Hemker M, Hutfless S (2014) The prevalence of Clostridium difficile infection in pediatric and adult patients with inflammatory bowel disease. Dig Dis Sci 59(9):2222–2227PubMedGoogle Scholar
  37. 37.
    Kelsen JR et al (2011) Recurrence rate of clostridium difficile infection in hospitalized pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 17(1):50–55PubMedGoogle Scholar
  38. 38.
    Cho S et al (2018) Fecal microbiota transplant for recurrent Clostridium difficile infection in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr 68(3):343–347Google Scholar
  39. 39.
    Hourigan SK et al (2015) Microbiome changes associated with sustained eradication of Clostridium difficile after single faecal microbiota transplantation in children with and without inflammatory bowel disease. Aliment Pharmacol Ther 42(6):741–752PubMedGoogle Scholar
  40. 40.
    Cammarota G et al (2017) European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66(4):569–580PubMedPubMedCentralGoogle Scholar
  41. 41.
    Allegretti J et al (2017) The current landscape and lessons from fecal microbiota transplantation for inflammatory bowel disease: Past, present, and future. Inflamm Bowel Dis 23(10):1710–1717PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Abteilung für pädiatrische Gastroenterologie, Hepatologie und ErnährungDr. von Haunersches Kinderspital, Ludwig-Maximilians-UniversitätMünchenDeutschland

Personalised recommendations