Advertisement

Monatsschrift Kinderheilkunde

, Volume 165, Issue 6, pp 502–509 | Cite as

Physiologische Relevanz des braunen Fettgewebes beim Menschen

  • D. Tews
  • P. Fischer-Posovszky
  • K. M. Debatin
  • A. J. Beer
  • M. WabitschEmail author
Übersichten

Zusammenfassung

Zur Regulation der Körpertemperatur verfügen Säugetiere über braunes Fettgewebe (brown adipose tissue, BAT), welches erhebliche Mengen von chemischer Energie in Wärme umwandeln kann. Die Entdeckung von funktionell aktivem BAT bei Erwachsenen führte zu Überlegungen, seine Aktivität im Rahmen einer Adipositastherapie zu nutzen. In diesem Review sollen grundlegende Mechanismen der BAT-Thermogenese dargestellt sowie die physiologische Relevanz des BAT hinsichtlich der Körpergewichtsregulation beim Menschen diskutiert werden.

Schlüsselwörter

Braunes Fettgewebe Adipositas Körpergewichtsregulation 

Physiological relevance of brown adipose tissue in humans

Abstract

For the regulation of body temperature, mammals possess brown adipose tissue (BAT), which is able to convert significant amounts of chemical energy into heat. The discovery of functionally active BAT in adults led to discussion about using its activity as part of obesity treatment. In this review article we present the basic mechanisms of BAT thermogenesis and discuss the physiological relevance of BAT with regard to weight regulation in humans.

Keywords

Brown adipose tissue Obesity Body weight regulation 

Notes

Danksagung

Diese Arbeit wurde unterstützt durch die Deutsche Forschungsgemeinschaft (TE 912/2–1), das Bundesministerium für Bildung und Forschung (Kompetenznetz Adipositas Seed Money FKZ 01GI1326) sowie durch das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (Boehringer Ingelheim Ulm University Biocenter Az: 32-7533.-6-10/15/5) an DT.

Einhaltung ethischer Richtlinien

Interessenkonflikt

D. Tews, P. Fischer-Posovszky, K.M. Debatin, A.J. Beer und M. Wabitsch geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Abb. 5 zeigt Daten aus einer Studie, in der humanes Gewebe verwendet wurde. Die Angaben dazu finden sich in dem zitierten Artikel.

Literatur

  1. 1.
    Aherne W, Hull D (1964) The site of heat production in the newborn infant. Proc R Soc Med 57:1172–1173PubMedPubMedCentralGoogle Scholar
  2. 2.
    Aherne W, Hull D (1966) Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 91:223–234. doi:10.1002/path.1700910126CrossRefPubMedGoogle Scholar
  3. 3.
    Barbatelli G, Murano I, Madsen L et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253. doi:10.1152/ajpendo.00600.2009CrossRefPubMedGoogle Scholar
  4. 4.
    Blondin DP, Labbé SM, Tingelstad HC et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99:438–446. doi:10.1210/jc.2013-3901CrossRefGoogle Scholar
  5. 5.
    Bordicchia M, Liu D, Amri E et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program im mouse and human adipocytes. J Clin Invest 122:1022–1036. doi:10.1172/JCI59701DS1CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi:10.1152/physrev.00015.2003CrossRefPubMedGoogle Scholar
  7. 7.
    Chalfant JS, Smith ML, Hu HH et al (2012) Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. Am J Clin Nutr 95:1144–1149. doi:10.3945/ajcn.111.030650CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chondronikola M, Volpi E, Børsheim E et al (2014) Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes. doi:10.2337/db14-0746PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cinti S (2001) The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc 60:319–328. doi:10.1079/PNS200192CrossRefPubMedGoogle Scholar
  10. 10.
    Cypess AM, Chen Y‑C, Sze C et al (2012) Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci 109:10001–10005. doi:10.1073/pnas.1207911109CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. doi:10.1097/OGX.0b013e3181ac8aa2CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a β3-Adrenergic receptor agonist. Cell Metab 21:33–38. doi:10.1016/j.cmet.2014.12.009CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cypess AM, White AP, Vernochet C et al (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639. doi:10.1038/nm.3112CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Divakaruni AS, Humphrey DM, Brand MD (2012) Fatty acids change the conformation of uncoupling protein 1 (UCP1). J Biol Chem 287:36845–36853. doi:10.1074/jbc.M112.381780CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Drubach LA, Palmer EL 3rd, Connolly LP et al (2011) Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr. doi:10.1016/j.jpeds.2011.06.028PubMedGoogle Scholar
  16. 16.
    Enerbäck S, Jacobsson A, Simpson EM et al (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94. doi:10.1038/387090a0CrossRefPubMedGoogle Scholar
  17. 17.
    Gilsanz V, Chung SA, Jackson H et al (2011) Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr 158:722–726. doi:10.1016/j.jpeds.2010.11.020CrossRefPubMedGoogle Scholar
  18. 18.
    Gilsanz V, Smith ML, Goodarzian F et al (2012) Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr 160:604–609. doi:10.1016/j.jpeds.2011.09.035CrossRefPubMedGoogle Scholar
  19. 19.
    Hatai S (1902) On the presence in human embryos of an interscapular gland corresponding to the so-called Hibernating gland of lower mammals. Anat Anz 21:369–373Google Scholar
  20. 20.
    Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39PubMedPubMedCentralGoogle Scholar
  21. 21.
    Himms-Hagen J, Melnyk A, Zingaretti MC et al (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681PubMedGoogle Scholar
  22. 22.
    Jespersen NZ, Larsen TJ, Peijs L et al (2013) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17:798–805. doi:10.1016/j.cmet.2013.04.011CrossRefPubMedGoogle Scholar
  23. 23.
    Kern PA, Finlin BS, Zhu B et al (2014) The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab 99:jc20142440. doi:10.1210/jc.2014–2440CrossRefGoogle Scholar
  24. 24.
    Van Der Lans AAJJ, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403. doi:10.1172/JCI68993CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 71:291–297CrossRefPubMedGoogle Scholar
  26. 26.
    Lee P, Linderman JD, Smith S et al (2014) Irisin and {FGF}21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309. doi:10.1016/j.cmet.2013.12.017CrossRefPubMedGoogle Scholar
  27. 27.
    Lee P, Swarbrick MM, Zhao JT, Ho KKY (2011) Inducible brown adipogenesis of supraclavicular fat in adult humans. Endocrinology 152:3597–3602. doi:10.1210/en.2011-1349CrossRefPubMedGoogle Scholar
  28. 28.
    Lidell ME, Betz MJ, Dahlqvist Leinhard O et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634. doi:10.1038/nm.3017CrossRefPubMedGoogle Scholar
  29. 29.
    Marken Lichtenbelt WD van, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508 (360/15/1500 [pii]). doi:10.1056/NEJMoa0808718CrossRefPubMedGoogle Scholar
  30. 30.
    Muzik O, Mangner TJ, Granneman JG (2012) Assessment of oxidative metabolism in brown fat using {PET} imaging. Front Endocrinol (Lausanne) 3:15. doi:10.3389/fendo.2012.00015Google Scholar
  31. 31.
    Orava J, Nuutila P, Noponen T et al (2013) Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring):1–37. doi:10.1002/oby.20456Google Scholar
  32. 32.
    Ouellet V, Labbé SM, Blondin DP et al (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552. doi:10.1172/JCI60433CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pfannenberg C, Werner MK, Ripkens S et al (2010) Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59:1789–1793. doi:10.2337/db10-0004CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ponrartana S, Aggabao PC, Hu HH et al (2012) Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab 97:2693–2698. doi:10.1210/jc.2012-1589CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Richard D, Monge-Roffarello B, Chechi K et al (2012) Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 3:1–8. doi:10.3389/fendo.2012.00036Google Scholar
  36. 36.
    Rockstroh D, Landgraf K, Wagner IV et al (2015) Direct evidence of brown adipocytes in different fat depots in children. PLoS ONE 10:e0117841. doi:10.1371/journal.pone.0117841CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667. doi:10.1038/ncb2740CrossRefPubMedGoogle Scholar
  38. 38.
    Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531. doi:10.2337/db09-0530CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schlein C, Talukdar S, Heine M et al (2016) FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. doi:10.1016/j.cmet.2016.01.006PubMedGoogle Scholar
  40. 40.
    Sharp LZ, Shinoda K, Ohno H et al (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. doi:10.1371/journal.pone.0049452Google Scholar
  41. 41.
    Shimasaki T, Masaki T, Mitsutomi K et al (2013) The Dipeptidyl Peptidase-4 inhibitor Des-Fluoro-Sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS ONE 8:1–11. doi:10.1371/journal.pone.0063626CrossRefGoogle Scholar
  42. 42.
    Shinoda K, Luijten IHN, Hasegawa Y et al (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 2:1–8. doi:10.1038/nm.3819Google Scholar
  43. 43.
    Stuart JA, Harper JA, Brindle KM et al (2001) A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J 356:779–789CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Symonds ME, Henderson K, Elvidge L et al (2012) Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. doi:10.1016/j.jpeds.2012.04.056PubMedGoogle Scholar
  45. 45.
    Tews D, Schwar V, Scheithauer M et al (2014) Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 395:41–50. doi:10.1016/j.mce.2014.07.011CrossRefPubMedGoogle Scholar
  46. 46.
    Tseng Y‑H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004. doi:10.1038/nature07221CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vijgen GHEJ, Bouvy ND, Teule GJJ et al (2012) Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 97:E1229–E1233. doi:10.1210/jc.2012-1289CrossRefPubMedGoogle Scholar
  48. 48.
    Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525 (360/15/1518 [pii]). doi:10.1056/NEJMoa0808949CrossRefPubMedGoogle Scholar
  49. 49.
    Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344. doi:10.1038/nm.3324CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wu J, Boström P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376. doi:10.1016/j.cell.2012.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Xue R, Wan Y, Zhang S et al (2013) Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metab 306:E363–E372. doi:10.1152/ajpendo.00119.2013CrossRefPubMedGoogle Scholar
  52. 52.
    Yoneshiro T, Aita S, Kawai Y et al (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr. doi:10.3945/ajcn.111.018606PubMedGoogle Scholar
  53. 53.
    Yoneshiro T, Aita S, Matsushita M et al (2010) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring). doi:10.1038/oby.2010.105Google Scholar
  54. 54.
    Yoneshiro T, Aita S, Matsushita M et al (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408. doi:10.1172/JCI67803CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Young P, Arch JR, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167:10–14CrossRefPubMedGoogle Scholar
  56. 56.
    Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120. doi:10.1096/fj.09-133546CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. Tews
    • 1
  • P. Fischer-Posovszky
    • 1
  • K. M. Debatin
    • 2
  • A. J. Beer
    • 3
  • M. Wabitsch
    • 1
    Email author
  1. 1.Sektion Pädiatrische Endokrinologie und DiabetologieUniversitätsklinik für Kinder- und JugendmedizinUlmDeutschland
  2. 2.Klinik für Kinder und Jugendmedizin UlmUlmDeutschland
  3. 3.Klinik für Nuklearmedizin UlmUlmDeutschland

Personalised recommendations