Advertisement

Monatsschrift Kinderheilkunde

, Volume 163, Issue 5, pp 448–454 | Cite as

Genetische Untersuchungen an Kindern mit schweren bakteriellen Infektionserkrankungen

  • A. Binder
  • D.S. Klobassa
  • A. Trobisch
  • W. ZenzEmail author
Leitthema
  • 191 Downloads

Zusammenfassung

Durch die rasanten Fortschritte der Molekulargenetik ist es möglich, das gesamte Genom des Menschen systematisch zu untersuchen und die Gene zu identifizieren, die für das Auftreten und die verschiedenen Verläufe von Infektionserkrankungen verantwortlich sind. Frühere genetische Analysen umfassten Zwillingsstudien sowie Studien an Adoptivkindern, „Linkage“-Analysen und Assoziationsstudien mit Kandidatengenen. Neuere Methoden untersuchen das gesamte Genom (GWAS) oder Exom („exome sequencing“) gleichzeitig auf mögliche Assoziationen zu bestimmten Krankheiten und Krankheitsverläufen. Genexpressionsanalysen befassen sich mit der spezifischen Reaktion des Erkrankten und versprechen damit, zukünftig die Diagnostik bei Fieber unklarer Genese oder nichtzuordenbaren Symptomenkomplexen zu erleichtern. In dem groß angelegten Projekt der Europäischen Union European Childhood Life-threatening Infectious Diseases Study (EUCLIDS) werden Blutproben von Kindern mit schweren Infektionserkrankungen gesammelt und mit den neuesten Methoden genetisch untersucht. Das Projekt stellt ein einzigartiges Unterfangen dar, das von einem interdisziplinären Team mit Experten in Infektiologie, Immunologie, Genetik, Bioinformatik, Mikrobiologie, Public Health und Vakzinologie etabliert wurde. Geplante Untersuchungen im Rahmen des Studienprojekts sind u. a. die molekulargenetische Detektion von Erregern, die nicht anhand der Routinediagnostik erfasst werden, die Identifikation von humanen Genen, die für den Verlauf der Meningokokkeninfektion verantwortlich sind, die Identifikation von humanen Suszeptibilitätsgenen bei Infektionen mit Pneumokokken, Staphylokokken und Gruppe-A-Streptokokken, Genexpressionsanalysen bei extremen Verlaufsformen dieser Infektionen sowie die Untersuchung von Impfantworten anhand genomweiter Assoziationsstudien.

Schlüsselwörter

Linkage-Analysen Suszeptibilität Genomweite Assoziationsstudie Sequenzierung Genexpressionsanalyse 

Genetic investigations in children with severe bacterial infectious diseases

Abstract

Modern molecular genetics now provide a realm of new methods for pinpointing genes or regions of interest causative for susceptibility and outcome of infectious diseases. Linkage analyses and twin studies have been applied for infectious diseases but so far only few traits have been successfully mapped to a gene locus. Genetic association studies may be an effective approach to the problem posed by complex traits. With the explosion of genotyping technologies, genome-wide association studies and full exome sequencing have become feasible. Gene expression analyses can detect the specific responses of the host and may lead to faster and more reliable diagnoses for fever without an obvious cause in children. A new European project funded by the 7th framework program, the European childhood life-threatening infectious diseases study (EUCLIDS) aims to use these methods to identify mechanisms underlying susceptibility, provide new targets for treatment and prevention and identify those at risk of disease or poor outcome. This is a unique European project, which has established an interdisciplinary team with expertise in infectious diseases, immunogenetics, bioinformatics, microbiology, public health and vaccinology. Within this project several sub-studies are planned, e.g. molecular genetic detection of pathogens that are not included in routine diagnostics, identification of human genes that are causally related to severity in meningococcal infections, identification of human susceptibility genes in other severe infections with Streptococcus pneumoniae, Staphylococcus and group A streptococci, gene expression profiling in extreme phenotypes and genetic investigations of vaccine responses.

Keywords

Linkage analysis Susceptibility Genome-wide association study Sequencing Gene expression profiling 

Notes

Danksagung

Dieses Forschungsprojekt wird durch das 7. Rahmenprogramm der Europäischen Union gefördert (EC-GA Nr. 279185; EUCLIDS).

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Binder, D.S. Klobassa, A. Sonnleitner, A. Trobisch, W. Zenz geben an, dass kein Interessenkonflikt besteht.

Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethikkommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Literatur

  1. 1.
    Bellamy R, Beyers N, McAdam KP et al (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci U S A 97:8005–8009CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Biesecker LG, Green RC (2014) Diagnostic clinical genome and exome sequencing. N Engl J Med 371:1170CrossRefPubMedGoogle Scholar
  3. 3.
    Binder A (2007) A review of the genetics of essential hypertension. Curr Opin Cardiol 22:176–184CrossRefPubMedGoogle Scholar
  4. 4.
    Binder A, Endler G, Muller M et al (2007) 4G4G genotype of the plasminogen activator inhibitor-1 promoter polymorphism associates with disseminated intravascular coagulation in children with systemic meningococcemia. J Thromb Haemost 5:2049–2054CrossRefPubMedGoogle Scholar
  5. 5.
    Binder A, Endler G, Rieger S et al (2007) Protein C promoter polymorphisms associate with sepsis in children with systemic meningococcemia. Hum Genet 122:183–190CrossRefPubMedGoogle Scholar
  6. 6.
    Burgner D, Davila S, Breunis WB et al (2009) A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet 5:e1000319CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Burgner D, Jamieson SE, Blackwell JM (2006) Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect Dis 6:653–663CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Choi M, Scholl UI, Ji W et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106:19096–19101CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Davila S, Wright VJ, Khor CC et al (2010) Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat Genet 42:772–776CrossRefPubMedGoogle Scholar
  10. 10.
    Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Frodsham AJ, Zhang L, Dumpis U et al (2006) Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence. Proc Natl Acad Sci U S A 103:9148–9153CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Haralambous E, Weiss HA, Radalowicz A et al (2003) Sibling familial risk ratio of meningococcal disease in UK Caucasians. Epidemiol Infect 130:413–418PubMedCentralPubMedGoogle Scholar
  13. 13.
    Herberg JA, Kaforou M, Gormley S et al (2013) Transcriptomic profiling in childhood H1N1/09 influenza reveals reduced expression of protein synthesis genes. J Infect Dis 208:1664–1668CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Hill AV (2006) Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 40:469–486CrossRefPubMedGoogle Scholar
  15. 15.
    Ioannidis JP, Ntzani EE, Trikalinos TA et al (2001) Replication validity of genetic association studies. Nat Genet 29:306–309CrossRefPubMedGoogle Scholar
  16. 16.
    Jallow M, Teo YY, Small KS et al (2009) Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet 41:657–665CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Jepson A (1998) Twin studies for the analysis of heritability of infectious diseases. Bull Inst Pasteur 96:71–81CrossRefGoogle Scholar
  18. 18.
    Kamatani Y, Wattanapokayakit S, Ochi H et al (2009) A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 41:591–595CrossRefPubMedGoogle Scholar
  19. 19.
    Khor CC, Chau TN, Pang J et al (2011) Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1. Nat Genet 43:1139–1141CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Khor CC, Davila S, Breunis WB et al (2011) Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 43:1241–1246CrossRefPubMedGoogle Scholar
  21. 21.
    Khor CC, Davila S, Shimizu C et al (2011) Genome-wide linkage and association mapping identify susceptibility alleles in ABCC4 for Kawasaki disease. J Med Genet 48:467–472CrossRefPubMedGoogle Scholar
  22. 22.
    Liu L, Johnson HL, Cousens S et al (2012) Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379:2151–2161CrossRefPubMedGoogle Scholar
  23. 23.
    Mira MT, Alcais A, Nguyen VT et al (2004) Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427:636–640CrossRefPubMedGoogle Scholar
  24. 24.
    Ramilo O, Allman W, Chung W et al (2007) Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 109:2066–2077CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rowell JL, Dowling NF, Yu W et al (2012) Trends in population-based studies of human genetics in infectious diseases. PLoS One 7:e25431CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Siddiqui MR, Meisner S, Tosh K et al (2001) A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat Genet 27:439–441CrossRefPubMedGoogle Scholar
  27. 27.
    Sorensen TI, Nielsen GG, Andersen PK et al (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–732CrossRefPubMedGoogle Scholar
  28. 28.
    Thye T, Vannberg FO, Wong SH et al (2010) Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet 42:739–741CrossRefPubMedGoogle Scholar
  29. 29.
    Tomashov-Matar R, Biran G, Lagovsky I et al (2012) Severe combined immunodeficiency (SCID): from the detection of a new mutation to preimplantation genetic diagnosis. J Assist Reprod Genet 29:687–692CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Verhagen LM, Zomer A, Maes M et al (2013) A predictive signature gene set for discriminating active from latent tuberculosis in Warao Amerindian children. BMC Genomics 14:74CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Wellcome Trust Case Control C (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  32. 32.
    Zenz W, Klobassa DS, Sonnleitner A et al (2014) Gendiagnostische Forschung an Kindern in Österreich. Monatsschr Kinderheilkd 162:7CrossRefGoogle Scholar
  33. 33.
    Zhang F, Liu H, Chen S et al (2011) Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet 43:1247–1251CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang FR, Huang W, Chen SM et al (2009) Genomewide association study of leprosy. N Engl J Med 361:2609–2618CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Binder
    • 1
  • D.S. Klobassa
    • 1
  • A. Trobisch
    • 1
  • W. Zenz
    • 1
    Email author
  1. 1.Klinische Abteilung für Allgemeine PädiatrieMedizinische Universität GrazGrazÖsterreich

Personalised recommendations