Monatsschrift Kinderheilkunde

, Volume 158, Issue 3, pp 216–222

Transplantation CD3/CD19-depletierter Stammzellen

Plattform für weiterführende Zelltherapie
  • P. Bader
  • A. Willasch
  • A.  Jarisch
  • J. Soerensen
  • R. Esser
  • H. Bönig
  • T. Klingebiel
Leitthema

Zusammenfassung

Die allogene Stammzelltransplantation ist ein wichtiges und wertvolles Therapieelement in der Behandlung von vielen Patienten mit malignen und nichtmalignen Systemerkrankungen. Limitierend ist oft das Nichtvorhandensein eines HLA-identischen Spenders (HLA: humanes Leukozytenantigen), insbesondere für Kinder und Jugendliche mit Migrationshintergrund, für die deutlich weniger häufig ein passender Spender gefunden werden kann. Es war das zentrale Ziel über viele Jahre, Stammzelltransplantationen über HLA-Barrieren hinweg zu ermöglichen und v. a. halbidentische (haploidentische) Eltern als Spender einsetzen zu können. Dies würde jedem Patienten die Möglichkeit eröffnen, mit einem Transplantationsverfahren behandelt zu werden. In den vergangenen Jahren ist es gelungen, durch die Veränderung des Manipulationsprozesses peripherer Stammzellen dieses Therapieverfahren sicherer und effektiver zu machen. Die haploidentische Stammzelltransplantation kann nunmehr die Basis für weiterführende zelluläre Immuntherapieverfahren in der Behandlung von Patienten mit malignen und nichtmalignen Erkrankungen werden.

Schlüsselwörter

Haploidentische Stammzelltransplantation Immuntherapie Leukämie Maligne Erkrankungen Nichtmaligne Erkrankungen 

Transplantation with CD3/CD 19-depleted stem cells

A basis for further cell therapy

Abstract

Allogeneic stem cell transplantation has become an important option in the curative treatment of many patients with malignant and non-malignant systemic diseases. Non-availability of human leukocyte antigen (HLA) identical donors can limit access to this life-saving treatment, especially in ethnic minority patients, for whom identical donors are often not available. For many years, a central aim has been the development of stem cell transplantation across the HLA barrier and the use of haploidentical parents as stem cell donors. Such an approach will allow allogeneic transplantation of all patients in need. During the past years, it has become possible to optimize in vitro graft manipulation procedures making this transplant procedure safer and more efficient. Therefore, haploidentical transplantation can now serve as a basis for further cellular immunotherapy in the treatment of malignant and non-malignant diseases.

Keywords

Haploidentical stem cell transplantation Immunotherapy Leukemia Malignant diseases Non-malignant diseases 

Literatur

  1. 1.
    Aversa F, Tabilio A, Terenzi A et al (1994) Successful engraftment of T-cell-depleted haploidentical „three-loci“ incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 84(11):3948–3955PubMedGoogle Scholar
  2. 2.
    Aversa F, Tabilio A, Velardi A et al (1998) Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 339(17):1186–1193CrossRefPubMedGoogle Scholar
  3. 3.
    Bader P, Willasch A, Niethammer D, Klingebiel T (2007) Haploidentical stem cell transplantation in childhood. Curr Cancer Ther Rev 3:37–44CrossRefGoogle Scholar
  4. 4.
    Beatty PG, Mori M, Milford E (1995) Impact of racial genetic polymorphism on the probability of finding an HLA-matched donor. Transplantation 60(8):778–783CrossRefPubMedGoogle Scholar
  5. 5.
    Handgretinger R, Klingebiel T, Lang P et al (2001) Megadose transplantation of purified peripheral blood CD34(+) progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant 27(8):777–783CrossRefPubMedGoogle Scholar
  6. 6.
    Hansen JA, Petersdorf E, Martin PJ, Anasetti C (1997) Hematopoietic stem cell transplants from unrelated donors. Immunol Rev 157:141–151CrossRefPubMedGoogle Scholar
  7. 7.
    Klingebiel T, Cornish J, Labopin M et al (2009) Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplant in children with very-high risk acute lymphoblastic leukemia – impact of center size: an analysis on behalf of the Acute Leukemia and Pediatric Disease Working Parties of the European Blood and Marrow Transplant Group. Blood Dec 29. [Epub ahead of print]Google Scholar
  8. 8.
    Klingebiel T, Handgretinger R, Lang P et al (2004) Haploidentical transplantation for acute lymphoblastic leukemia in childhood. Blood Rev 18(3):181–192CrossRefPubMedGoogle Scholar
  9. 9.
    Kolb HJ, Schattenberg A, Goldman JM et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86(5):2041–2050PubMedGoogle Scholar
  10. 10.
    Lang P, Handgretinger R (2008) Haploidentical SCT in children: an update and future perspectives. Bone Marrow Transplant [Suppl 2] 42:S54-S59Google Scholar
  11. 11.
    Lang P, Klingebiel T, Bader P et al (2004) Transplantation of highly purified peripheral-blood CD34+ progenitor cells from related and unrelated donors in children with nonmalignant diseases. Bone Marrow Transplant 33(1):25–32CrossRefPubMedGoogle Scholar
  12. 12.
    Lang P, Schumm M, Greil J et al (2005) A comparison between three graft manipulation methods for haploidentical stem cell transplantation in pediatric patients: preliminary results of a pilot study. Klin Padiatr 217(6):334–338CrossRefPubMedGoogle Scholar
  13. 13.
    Lang P, Huenecke S, Pfeiffer M et al (2010) Natürliche Killerzellen in der Leukämie- und Tumortherapie. Monatsschr Kinderheilkd 3Google Scholar
  14. 14.
    Lowe EJ, Turner V, Handgretinger R et al (2003) T-cell alloreactivity dominates natural killer cell alloreactivity in minimally T-cell-depleted HLA-non-identical paediatric bone marrow transplantation. Br J Haematol 123(2):323–326CrossRefPubMedGoogle Scholar
  15. 15.
    Prigozhina TB, Gurevitch O, Zhu J, Slavin S (1997) Permanent and specific transplantation tolerance induced by a nonmyeloablative treatment to a wide variety of allogeneic tissues: I. Induction of tolerance by a short course of total lymphoid irradiation and selective elimination of the donor-specific host lymphocytes. Transplantation 63(10):1394–1399CrossRefPubMedGoogle Scholar
  16. 16.
    Reisner Y, Martelli MF (2000) Tolerance induction by „megadose“ transplants of CD34+ stem cells: a new option for leukemia patients without an HLA-matched donor. Curr Opin Immunol 12(5):536–541CrossRefPubMedGoogle Scholar
  17. 17.
    Reisner Y, Martelli MF (2000) Transplantation tolerance induced by „mega dose“ CD34+ cell transplants. Exp Hematol 28(2):119–127CrossRefPubMedGoogle Scholar
  18. 18.
    Rivera GK, Pinkel D, Simone JV et al (1993) Treatment of acute lymphoblastic leukemia. 30 years‘ experience at St. Jude Children’s Research Hospital. N Engl J Med 329(18):1289–1295CrossRefPubMedGoogle Scholar
  19. 19.
    Rowe JM, Lazarus HM (2001) Genetically haploidentical stem cell transplantation for acute leukemia. Bone Marrow Transplant 27(7):669–676CrossRefPubMedGoogle Scholar
  20. 20.
    Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100CrossRefPubMedGoogle Scholar
  21. 21.
    Slavin S, Nagler A, Naparstek E et al (1998) Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91(3):756–763PubMedGoogle Scholar
  22. 22.
    Storb R, Yu C, Sandmaier BM et al (1999) Mixed hematopoietic chimerism after marrow allografts. Transplantation in the ambulatory care setting. Ann N Y Acad Sci 872:372–375CrossRefPubMedGoogle Scholar
  23. 23.
    Storb R, Yu C, Zaucha JM et al (1999) Stable mixed hematopoietic chimerism in dogs given donor antigen, CTLA4Ig and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant. Blood 94(7):2523–2529PubMedGoogle Scholar
  24. 24.
    Toporski J, Garkavij M, Tennvall J et al (2009) High-dose iodine-131-metaiodobenzylguanidine with haploidentical stem cell transplantation and posttransplant immunotherapy in children with relapsed/refractory neuroblastoma. Biol Blood Marrow Transplant 15(9):1077–1085CrossRefPubMedGoogle Scholar
  25. 25.
    Willasch A, Hoelle W, Kreyenberg H et al (2006) Outcome of allogeneic stem cell transplantation in children with non-malignant diseases. Haematologica 91(6):788–794PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2010

Authors and Affiliations

  • P. Bader
    • 1
  • A. Willasch
    • 1
  • A.  Jarisch
    • 1
  • J. Soerensen
    • 1
  • R. Esser
    • 1
  • H. Bönig
    • 2
  • T. Klingebiel
    • 1
  1. 1.Schwerpunkt StammzelltransplantationZentrum für Kinder- und Jugendmedizin FrankfurtFrankfurt am MainDeutschland
  2. 2.Institut für TransfusionsmedizinDRK Blutspendedienst HessenFrankfurt am MainDeutschland

Personalised recommendations