Advertisement

Monatsschrift Kinderheilkunde

, Volume 158, Issue 2, pp 142–148 | Cite as

Umweltinduzierte frühe Prägung von Asthma und Epigenetik

  • S. Krauss-Etschmann Email author
  • M.K. Aneja
  • N. Schulz
Leitthema

Zusammenfassung

Der Begriff der frühen Prägung beschreibt die Mechanismen, wie bestimmte Umweltexpositionen während kritischer, früher Entwicklungsfenster einen langfristig prägenden Einfluss auf spätere Erkrankungsrisiken des Kindes haben und wie dieser Effekt – auch nach Ausbleiben der Exposition – über Generationen weitergegeben wird. Neue Erkenntnisse zu diesen Mechanismen eröffnen prinzipiell die Möglichkeit einer gezielten, therapeutischen Reprogrammierung, um damit der Entstehung von Asthma vorzubeugen. Krankheitsprägung wird durch epigenetische Mechanismen – d. h. vererbbare Genmodifikationen, welche die DNA-Sequenz unberührt lassen – vermittelt. Epidemiologischen Studien belegten, dass pränatale Expositionen, wie Ernährung, immunstimulierende Agenzien oder Rauchen während der Schwangerschaft, das Asthmarisiko des Kindes beeinflussen. Kürzlich wurde erstmals nachgewiesen, dass Ernährung oder Abgasexposition während der Schwangerschaft via epigenetische Veränderungen mit kindlichem Asthma assoziiert sind und dieses Asthmarisiko bis in die 2. Generation vererbt wird. Das Potenzial neuer Erkenntnisse zu einer epigenetisch vermittelten, frühen Prägung von Asthma liegt in der Entwicklung präsymptomatischer Präventionsstrategien.

Schlüsselwörter

Asthma Prägung Epigenetik Pränatalphase Umwelt 

Early programming and environmental epigenetics of asthma

Abstract

The term “early programming” describes the mechanisms by which specific environmental exposures during critical periods of early development have a long-term impact on a child’s disease risks in later life. Moreover, this effect is passed on across generations even after discontinuation of the exposure. Understanding these mechanisms offers the potential of targeted therapeutic reprogramming in order to prevent asthma. Programming of diseases is caused by epigenetic mechanisms. These are heritable gene modifications that leave the DNA sequence untouched but can nonetheless be transferred to the next generation. The influence of prenatal exposures during pregnancy, such as nutrition, immune stimulatory substances or tobacco smoke on a child’s risk for asthma has been highlighted in epidemiologic studies. Only recently, it was shown for the first time that exposure to nutrients or exhaust fumes in utero leads to epigenetic changes and is directly associated with asthma risk in children. This risk was transmitted across two generations. The potential of this new insight into epigenetically mediated early programming of asthma offers novel opportunities for the development of pre-symptomatic preventive strategies.

Keywords

Asthma Programming Epigenetic Prenatal phase Environment 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347(12):911–920CrossRefPubMedGoogle Scholar
  2. 2.
    Bertram C, Khan O, Ohri S et al (2008) Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. J Physiol 586(8):2217–2229CrossRefPubMedGoogle Scholar
  3. 3.
    Blumer N, Herz U, Wegmann M, Renz H (2005) Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 35(3):397–402CrossRefPubMedGoogle Scholar
  4. 4.
    Blumer N, Sel S, Virna S et al (2007) Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 37(3):348–357CrossRefPubMedGoogle Scholar
  5. 5.
    Camargo CA Jr, Rifas-Shiman SL, Litonjua AA et al (2007) Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr 85(3):788–795PubMedGoogle Scholar
  6. 6.
    Chatzi L, Torrent M, Romieu I et al (2008) Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax 63(6):507–513CrossRefPubMedGoogle Scholar
  7. 7.
    Devereux G, Turner SW, Craig LC et al (2006) Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am J Respir Crit Care Med 174(5):499–507CrossRefPubMedGoogle Scholar
  8. 8.
    Devereux G, Litonjua AA, Turner SW et al (2007) Maternal vitamin D intake during pregnancy and early childhood wheezing. Am J Clin Nutr 85(3):853–859PubMedGoogle Scholar
  9. 9.
    Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114(4):567–572PubMedCrossRefGoogle Scholar
  10. 10.
    Ege MJ, Bieli C, Frei R, et al (2006) Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 117(4):817–823CrossRefPubMedGoogle Scholar
  11. 11.
    Ege MJ, Herzum I, Büchele G et al (2008) Prenatal exposure to a farm environment modifies atopic sensitization at birth. J Allergy Clin Immunol 122(2):407–412, 412 e1–e4CrossRefPubMedGoogle Scholar
  12. 12.
    Fainaru O, Shseyov D, Hantisteanu S, Groner Y (2005) Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc Natl Acad Sci USA 102(30):10598–10603CrossRefPubMedGoogle Scholar
  13. 13.
    Fedulov AV, Leme AS, Kobzik L (2007) Duration of allergic susceptibility in maternal transmission of asthma risk. Am J Reprod Immunol 58(2):120–128CrossRefPubMedGoogle Scholar
  14. 14.
    Hamada K, Suzaki Y, Goldman A et al (2003) Allergen-independent maternal transmission of asthma susceptibility. J Immunol 170(4):1683–1689PubMedGoogle Scholar
  15. 15.
    Hollingsworth JW, Maruoka S, Boon K et al (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118(10):3462–3469PubMedGoogle Scholar
  16. 16.
    Hypponen E, Sovio U, Wjst M et al (2004) Infant vitamin D supplementation and allergic conditions in adulthood: northern Finland birth cohort 1966. Ann N Y Acad Sci 1037:84–95CrossRefPubMedGoogle Scholar
  17. 17.
    Kurukulaaratchy RJ, Waterhouse L, Matthews SM, Arshad SH (2005) Are influences during pregnancy associated with wheezing phenotypes during the first decade of life? Acta Paediatr 94(5):553–558CrossRefPubMedGoogle Scholar
  18. 18.
    Kwon HL, Triche EW, Belanger K, Bracken MB (2006) The epidemiology of asthma during pregnancy: prevalence, diagnosis, and symptoms. Immunol Allergy Clin North Am 26(1):29–62CrossRefPubMedGoogle Scholar
  19. 19.
    Lannero E, Wickman M, Pershagen G, Nordvall L (2006) Maternal smoking during pregnancy increases the risk of recurrent wheezing during the first years of life (BAMSE). Respir Res 7:3CrossRefPubMedGoogle Scholar
  20. 20.
    Liu CA, Wang CL, Chuang H et al (2003) Prenatal prediction of infant atopy by maternal but not paternal total IgE levels. J Allergy Clin Immunol 112(5):899–904CrossRefPubMedGoogle Scholar
  21. 21.
    Martinez FD, Wright AL, Taussig LM et al (1995) Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med 332(3):133–138CrossRefPubMedGoogle Scholar
  22. 22.
    Murphy VE, Clifton VL, Gibson PG (2006) Asthma exacerbations during pregnancy: incidence and association with adverse pregnancy outcomes. Thorax 61(2):169–176CrossRefPubMedGoogle Scholar
  23. 23.
    Mutius E von, Radon K (2008) Living on a farm: impact on asthma induction and clinical course. Immunol Allergy Clin North Am 28(3):631–647CrossRefGoogle Scholar
  24. 24.
    Olsen SF, Østerdal ML, Salvig JD et al (2008) Fish oil intake compared with olive oil intake in late pregnancy and asthma in the offspring: 16 y of registry-based follow-up from a randomized controlled trial. Am J Clin Nutr 88(1):167–175PubMedGoogle Scholar
  25. 25.
    Polte T, Hennig C, Hansen G (2008) Allergy prevention starts before conception: maternofetal transfer of tolerance protects against the development of asthma. J Allergy Clin Immunol 122(5):1022–1030 CrossRefPubMedGoogle Scholar
  26. 26.
    Schaub B (2010) Asthma bronchiale im Kindesalter – Pränatale Einflüsse auf die Immunentwicklung. Monatsschr Kinderheilkd 2:Google Scholar
  27. 27.
    Shaheen SO (2008) Prenatal nutrition and asthma: hope or hype? Thorax 63(6):483–485CrossRefPubMedGoogle Scholar
  28. 28.
    Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565CrossRefGoogle Scholar
  29. 29.
    Waterland RA (2009) Is epigenetics an important link between early life events and adult disease? Horm Res [Suppl 1] 71:13–16Google Scholar
  30. 30.
    Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300CrossRefPubMedGoogle Scholar
  31. 31.
    Willers SM, Wijga AH, Brunekreef G et al (2008) Maternal food consumption during pregnancy and the longitudinal development of childhood asthma. Am J Respir Crit Care Med 178(2):124–131CrossRefPubMedGoogle Scholar
  32. 32.
    Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257CrossRefPubMedGoogle Scholar
  33. 33.
    Zutavern A, Klot S von, Gehring U et al (2006) Pre-natal and post-natal exposure to respiratory infection and atopic diseases development: a historical cohort study. Respir Res 7:81CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Deutsches Forschungszentrum für Gesundheit und UmweltKinderklinik und Kinderpoliklinik, Dr. von Haunersches Kinderspital & Helmholtz Zentrum München, Ludwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations