Monatsschrift Kinderheilkunde

, Volume 155, Issue 2, pp 127–133 | Cite as

Neue Therapieansätze in der pädiatrischen Onkologie

Leitthema
  • 62 Downloads

Zusammenfassung

Das etablierte Therapiekonzept in der pädiatrischen Onkologie beruht neben Operation und Bestrahlung auf zytostatischer Chemotherapie. Durch die Kombination dieser 3 Modalitäten im Rahmen von kontrollierten, multizentrischen Studien wurden dramatische Heilungsfortschritte erzielt, die sich in den letzten Jahren kaum mehr verbessern ließen. Die Aufklärung der molekularen Grundlagen maligner Erkrankungen hat zur Identifikation unterschiedlicher Angriffspunkte für therapeutische Interventionen geführt. Dadurch erhofft man sich eine erheblich spezifischere Wirkung auf maligne Zellen und damit geringere Nebenwirkungen auf gesunde Zellen, die durch „klassische“ Zytostatika unspezifisch geschädigt werden. Diese Arbeit soll einen Überblick über viel versprechende neue Therapieformen in der pädiatrischen Onkologie geben. Dies sind v. a. monoklonale Antikörper, Tyrosinkinaseinhibitoren und neue Zytostatika. Zusätzlich sollen auch Verfahren, die sich noch in präklinischer Forschung befinden, wie die Inhibition der zyklinabhängigen Kinasen, der Farnesyltransferasen, der Telomerase, des mTOR („mammalian target of rapamycin“) und des Proteasoms sowie die Modulation epigenetischer Veränderungen besprochen werden.

Schlüsselwörter

Pädiatrische Onkologie Monoklonale Antikörper Tyrosinkinaseinhibitoren mTOR („mammalian target of rapamycin“) Inhibitoren 

New therapeutic approaches in pediatric oncology

Abstract

The established therapeutic concepts in pediatric oncology are based on surgery, radiation therapy and chemotherapy. By combining these three in controlled, multicenter studies, dramatically increased cure rates have been realized, which have lately remained nearly constant. The elucidation of the molecular mechanisms of malignant diseases has led to the identification of new targets for therapeutic interventions. It is expected that these novel therapies might exert a more specific action on malignant cells while sparing normal cells, thus leading to reduced side effects on healthy tissues. This review offers an overview of the most promising novel therapies used in pediatric oncology, namely monoclonal antibodies, tyrosine kinase inhibitors and new cytostatic drugs. Additionally, compounds which are undergoing preclinical testing, such as inhibitors of cyclin-dependent kinases, farnesyltransferases, telomerase, mammalian target of rapamycin (mTOR) and the proteasome, as well as the modulation of epigenetic changes will also be discussed.

Keywords

Pediatric oncology Monoclonal antibodies Tyrosine kinase inhibitors mTOR (mammalian target of rapamycin) Inhibitors 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Aghajanian C, Dizon DS, Sabbatini P et al. (2005) Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol 23: 5943–5949Google Scholar
  2. 2.
    Aguayo A, Kantarjian H, Manshouri T et al. (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96: 2240–2245PubMedGoogle Scholar
  3. 3.
    Angiolillo AL, Whitlock J, Chen Z et al. (2006) Phase II study of gemcitabine in children with relapsed acute lymphoblastic leukemia or acute myelogenous leukemia (ADVL0022): a Children’s Oncology Group Report. Pediatr Blood Cancer 46: 193–197CrossRefPubMedGoogle Scholar
  4. 4.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410CrossRefPubMedGoogle Scholar
  5. 5.
    Berman E, Nicolaides M, Maki RG et al. (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354: 2006–2013CrossRefPubMedGoogle Scholar
  6. 6.
    Brethon B, Auvrignon A, Galambrun C et al. (2006) Efficacy and tolerability of gemtuzumab ozogamicin (anti-CD33 monoclonal antibody, CMA-676, Mylotarg) in children with relapsed/refractory myeloid leukemia. BMC Cancer 6: 172CrossRefPubMedGoogle Scholar
  7. 7.
    Byrd JC, Marcucci G, Parthun MR et al. (2005) A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105: 959–967CrossRefPubMedGoogle Scholar
  8. 8.
    Cappuzzo F, Finocchiaro G, Metro G et al. (2006) Clinical experience with gefitinib: an update. Crit Rev Oncol Hematol 58: 31–45PubMedGoogle Scholar
  9. 9.
    Claviez A, Eckert C, Seeger K et al. (2006) Rituximab plus chemotherapy in children with relapsed or refractory CD20-positive B-cell precursor acute lymphoblastic leukemia. Haematologica 91: 272–273PubMedGoogle Scholar
  10. 10.
    Dalal S, Berry AM, Cullinane CJ et al. (2005) Vascular endothelial growth factor: a therapeutic target for tumors of the Ewing’s sarcoma family. Clin Cancer Res 11: 2364–2378CrossRefPubMedGoogle Scholar
  11. 11.
    De Vries MJ, Veerman AJ, Zwaan CM (2004) Rituximab in three children with relapsed/refractory B-cell acute lymphoblastic leukaemia/Burkitt non-Hodgkin’s lymphoma. Br J Haematol 125: 414–415CrossRefPubMedGoogle Scholar
  12. 12.
    Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5: 671–688CrossRefPubMedGoogle Scholar
  13. 13.
    Fassas A, Anagnostopoulos A (2005) The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma 46: 795–802CrossRefPubMedGoogle Scholar
  14. 14.
    Gandhi V, Plunkett W (2006) Clofarabine and nelarabine: two new purine nucleoside analogs. Curr Opin Oncol 18: 584–590CrossRefPubMedGoogle Scholar
  15. 15.
    Golay J, Cortiana C, Manganini M et al. (2006) The sensitivity of acute lymphoblastic leukemia cells carrying the t(12;21) translocation to campath-1H-mediated cell lysis. Haematologica 91: 322–330PubMedGoogle Scholar
  16. 16.
    Goldman JM, Melo JV (2003) Chronic myeloid leukemia – advances in biology and new approaches to treatment. N Engl J Med 349: 1451–1464CrossRefPubMedGoogle Scholar
  17. 17.
    Jeha S, Gaynon PS, Razzouk BI et al. (2006) Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol 24: 1917–1923CrossRefPubMedGoogle Scholar
  18. 18.
    Jones LK, Saha V (2005) Philadelphia positive acute lymphoblastic leukaemia of childhood. Br J Haematol 130: 489–500CrossRefPubMedGoogle Scholar
  19. 19.
    Kerkela R, Grazette L, Yacobi R et al. (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12: 908–916CrossRefPubMedGoogle Scholar
  20. 20.
    Kolb EA, Steinherz PG (2003) A new multidrug reinduction protocol with topotecan, vinorelbine, thiotepa, dexamethasone, and gemcitabine for relapsed or refractory acute leukemia. Leukemia 17: 1967–1972CrossRefPubMedGoogle Scholar
  21. 21.
    Ludwig H, Khayat D, Giaccone G et al. (2005) Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer 104: 1794–1807CrossRefPubMedGoogle Scholar
  22. 22.
    Mesa RA (2006) Tipifarnib: farnesyl transferase inhibition at a crossroads. Expert Rev Anticancer Ther 6: 313–319CrossRefPubMedGoogle Scholar
  23. 23.
    Millot F, Guilhot J, Nelken B et al. (2006) Imatinib mesylate is effective in children with chronic myelogenous leukemia in late chronic and advanced phase and in relapse after stem cell transplantation. Leukemia 20: 187–192CrossRefPubMedGoogle Scholar
  24. 24.
    Morgillo F, Lee HY (2006) Lonafarnib in cancer therapy. Expert Opin Invest Drugs 15: 709–719CrossRefGoogle Scholar
  25. 25.
    Nardi V, Azam M, Daley GQ (2004) Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr Opin Hematol 11: 35–43CrossRefPubMedGoogle Scholar
  26. 26.
    O’Hare T, Walters DK, Stoffregen EP et al. (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65: 4500–4505CrossRefPubMedGoogle Scholar
  27. 27.
    Padro T, Ruiz S, Bieker R et al. (2000) Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 95: 2637–2644PubMedGoogle Scholar
  28. 28.
    Rajkumar SV, Richardson PG, Hideshima T et al. (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23: 630–639Google Scholar
  29. 29.
    Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N et al. (2002) Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100: 1014–1018CrossRefPubMedGoogle Scholar
  30. 30.
    Roman E, Cooney E, Harrison L et al. (2005) Preliminary results of the safety of immunotherapy with gemtuzumab ozogamicin following reduced intensity allogeneic stem cell transplant in children with CD33+ acute myeloid leukemia. Clin Cancer Res 11: 7164s-7170sCrossRefPubMedGoogle Scholar
  31. 31.
    Ryan DP, Appleman LJ, Lynch T et al. (2006) Phase I clinical trial of bortezomib in combination with gemcitabine in patients with advanced solid tumors. Cancer 107: 2482–2489CrossRefPubMedGoogle Scholar
  32. 32.
    Seggewiss R, Lore K, Greiner E et al. (2005) Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 105: 2473–2479CrossRefPubMedGoogle Scholar
  33. 33.
    Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24: 1770–1783CrossRefPubMedGoogle Scholar
  34. 34.
    Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5: 577–584CrossRefPubMedGoogle Scholar
  35. 35.
    Smith BD, Levis M, Beran M et al. (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103: 3669–3676CrossRefPubMedGoogle Scholar
  36. 36.
    Tang PA, Tsao MS, Moore MJ (2006) A review of erlotinib and its clinical use. Expert Opin Pharmacother 7: 177–193CrossRefPubMedGoogle Scholar
  37. 37.
    Wagner-Bohn A, Paulussen M, Vieira Pinheiro JP et al. (2006) Phase II study of gemcitabine in children with solid tumors of mesenchymal and embryonic origin. Anticancer Drugs 17: 859–864CrossRefPubMedGoogle Scholar
  38. 38.
    Weisberg E, Manley P, Mestan J et al. (2006) AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 94: 1765–1769CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Klinik mit Poliklinik für Kinder und JugendlicheFriedrich-Alexander Universität Erlangen-NürnbergErlangenDeutschland
  2. 2.Kinderklinik und Kinderpoliklinik, Dr. von Haunersches KinderspitalKlinikum Innenstadt, Ludwig Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations