Monatsschrift Kinderheilkunde

, Volume 154, Issue 1, pp 10–19 | Cite as

Maligne Knochentumoren bei Kindern und Jugendlichen

Leitthema
  • 124 Downloads

Zusammenfassung

Maligne primäre Knochentumoren sind mit einem Anteil von nur 0,1% aller Krebserkrankungen insgesamt selten, gehören aber bei Kindern und Jugendlichen zu den häufigsten soliden malignen Tumoren. Jährlich erkranken in Deutschland etwa 300–400 Patienten, mehr als die Hälfte davon im 2. Lebensjahrzehnt, Jungen etwas häufiger als Mädchen. Histologisch stellen die malignen Knochentumoren eine uneinheitliche Gruppe dar, im Kindes- und Jugendalter sind sie jedoch fast immer den Osteosarkomen oder den Tumoren der Ewing-Familie zuzuordnen. Aktuelle multimodale Therapiekonzepte bestehen aus einer neoadjuvanten systemischen Polychemotherapie, gefolgt von chirurgischer und beim Ewing-Sarkom auch strahlentherapeutischer Lokaltherapie und adjuvanter Fortführung der Chemotherapie. Durch diese intensive Behandlung kann heute in >60% der Patienten ein langfristiges Überleben erreicht werden. Die interdisziplinäre Therapie stellt hohe Ansprüche an Onkologie, operative Disziplinen, Radiologie und Pathologie. Sie sollte daher an spezialisierten Zentren im Rahmen prospektiver Therapiestudien erfolgen.

Schlüsselwörter

Osteosarkom Ewing-Sarkom Multimodales Therapiekonzept  Interdisziplinäre Therapie Langfristiges Überleben 

Malignant bone tumors in children and adolescents

Abstract

With an approximate incidence of only 0.1% of all cancers, malignant primary bone tumors are rare. However, they are among the most frequent solid cancers in children and adolescents. Approximately 300–400 new cases are diagnosed in Germany each year; more than half of these are first encountered in the second decade of life, and boys are affected more often than girls. Histologically, malignant bone tumors are a diverse group, but in childhood and adolescence they can usually be assigned to the group of osteosarcomas or that of Ewing tumors. Current multimodal therapeutic strategies consist of neoadjuvant systemic polychemotherapy, followed by surgery — and in the case of Ewing tumors sometimes radiotherapy—and continuation of chemotherapy as an adjuvant therapy. Such intensive treatment makes it possible to achieve long-term disease-free survival in more than 60% of patients. Interdisciplinary treatment makes high demands on oncology, the surgical disciplines, and radiology and pathology and should therefore be performed in specialized centers and monitored in prospective trials.

Keywords

Osteosarcoma Ewing’s sarcoma Multimodal therapeutic strategy Interdisciplinary therapy Long-term survival 

Literatur

  1. 1.
    Bielack SS, Kempf-Bielack B, Delling G et al. (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20:776–790CrossRefPubMedGoogle Scholar
  2. 2.
    Huvos AG (1991) Bone tumors: diagnosis, treatment, and prognosis. In: Huvos AG (ed) Bone tumors: diagnosis, treatment, and prognosis. Saunders, PhiladelphiaGoogle Scholar
  3. 3.
    Paulussen M, Fröhlich B, Jürgens H (2001) Ewing tumour: incidence, prognosis and treatment options. Paediatr Drugs 3:899–913PubMedGoogle Scholar
  4. 4.
    Hawkins MM, Wilson LM, Burton HS et al. (1996) Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst 88:270–278PubMedGoogle Scholar
  5. 5.
    Delattre O, Zucman J, Melot T et al. (1994) The Ewing family of tumors — a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331:294–299CrossRefPubMedGoogle Scholar
  6. 6.
    Zoubek A, Dockhorn-Dworniczak B, Delattre O et al. (1996) Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 14:1245–1251PubMedGoogle Scholar
  7. 7.
    Fletcher C, Unni K, Mertens K (2002) WHO classification of tumours. Pathology and genetics of tumours of soft tissue and bone. In: Fletcher C, Unni K, Mertens K (eds) WHO classification of tumours. Pathology and genetics of tumours of soft tissue and bone. IARC Press, LyonGoogle Scholar
  8. 8.
    Schmid D, Herrmann C, Jurgens H et al. (1991) Malignant peripheral neuroectodermal tumor and its necessary distinction from Ewing’s sarcoma. A report from the Kiel Pediatric Tumor Registry. Cancer 68:2251–2259PubMedGoogle Scholar
  9. 9.
    Kager L, Zoubek A, Potschger U et al. (2003) Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 21:2011–2018CrossRefPubMedGoogle Scholar
  10. 10.
    Cotterill SJ, Ahrens S, Paulussen M et al. (2000) Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18:3108–3114PubMedGoogle Scholar
  11. 11.
    van der Woude H, Bloem J, Hogendoorn P (1998) Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing’s sarcoma: review of current imaging modalities. Skeletal Radiol 27:57–71CrossRefPubMedGoogle Scholar
  12. 12.
    Hawkins DS, Rajendran JG, Conrad EU et al. (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 94:3277–3284CrossRefPubMedGoogle Scholar
  13. 13.
    European Musculo-Skeletal Oncology Society (1990) Aufruf der Europäischen Gesellschaft für muskuloskeletale Tumoren (EMSOS) an die Chirurgen, Orthopäden und Praktiker: Zentralisierung von Diagnose und Therapie maligner Knochen- und Weichteiltumoren. Dtsch Ärztebl 87:224–225Google Scholar
  14. 14.
    Grimer RJ (2005) Surgical options for children with osteosarcoma. Lancet Oncol 6:85–92CrossRefPubMedGoogle Scholar
  15. 15.
    Kotz R, Windhager R, Dominkus M et al. (2000) A self-extending paediatric leg implant. Nature 406:143–144CrossRefPubMedGoogle Scholar
  16. 16.
    Enneking W, Spanier S, Goodmann M (1980) A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop 153:106–120PubMedGoogle Scholar
  17. 17.
    Grimer RJ, Sommerville S, Warnock D et al. (2005) Management and outcome after local recurrence of osteosarcoma. Eur J Cancer 41:578–583PubMedGoogle Scholar
  18. 18.
    Picci P, Sangiorgi L, Rougraff BT et al. (1994) Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol 12:2699–2705PubMedGoogle Scholar
  19. 19.
    DeLaney TF, Park L, Goldberg SI et al. (2005) Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys 61:492–498CrossRefPubMedGoogle Scholar
  20. 20.
    Thomas P, Perez C, Neff J et al. (1984) The management of Ewing’s sarcoma: role of radiotherapy in local tumor control. Cancer Treat Rep 68:703–710PubMedGoogle Scholar
  21. 21.
    Bacci G, Ferrari S, Longhi A et al. (2004) Role of surgery in local treatment of Ewing’s sarcoma of the extremities in patients undergoing adjuvant and neoadjuvant chemotherapy. Oncol Rep 11:111–120PubMedGoogle Scholar
  22. 22.
    Dunst J, Schuck A (2004) Role of radiotherapy in Ewing tumors. Pediatr Blood Cancer 42:465–470CrossRefPubMedGoogle Scholar
  23. 23.
    Schuck A, Ahrens S, Paulussen M et al. (2003) Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials. Int J Radiat Oncol Biol Phys 55:168–177CrossRefPubMedGoogle Scholar
  24. 24.
    Patel S, Meyers PA, Huvos AG et al. (2002) Improved outcomes in patients with osteogenic sarcoma of the head and neck. Cancer 95:1495–1503PubMedGoogle Scholar
  25. 25.
    Goldstein-Jackson SY, Gosheger G, Delling G et al. (2005) Extraskeletal osteosarcoma has a favourable prognosis when treated like conventional osteosarcoma. J Cancer Res Clin Oncol 131:520–526PubMedGoogle Scholar
  26. 26.
    Picci P, Rougraff BT, Bacci G et al. (1993) Prognostic significance of histopathologic response to chemotherapy in nonmetastatic Ewing’s sarcoma of the extremities. J Clin Oncol 11:1763–1769PubMedGoogle Scholar
  27. 27.
    Salzer-Kuntschik M, Brand G, Delling G (1983) Bestimmung des morphologischen Regressionsgrades nach Chemotherapie bei malignen Knochentumoren. Pathologe 4:135–141PubMedGoogle Scholar
  28. 28.
    Kempf-Bielack B, Bielack SS, Jurgens H et al. (2005) Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol 23:559–568CrossRefPubMedGoogle Scholar
  29. 29.
    Burdach S, Meyer-Bahlburg A, Laws HJ et al. (2003) High-dose therapy for patients with primary multifocal and early relapsed Ewing’s tumors: results of two consecutive regimens assessing the role of total-body irradiation. J Clin Oncol 21:3072–3078CrossRefPubMedGoogle Scholar
  30. 30.
    Barker LM, Pendergrass TW, Sanders JE et al. (2005) Survival after recurrence of Ewing’s sarcoma family of tumors. J Clin Oncol 23:4354–4362CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Kinder- und Jugendmedizin, Pädiatrische Hämatologie und OnkologieUniversitätsklinikum Münster
  2. 2.St. Anna KinderspitalWienÖsterreich
  3. 3.Klinik für Kinder- und Jugendmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie)Olgahospital — Pädiatrisches Zentrum der Landeshauptstadt Stuttgart
  4. 4.Klinik für Kinder- und Jugendmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie)Olgahospital — Pädiatrisches Zentrum der Landeshauptstadt StuttgartStuttgart

Personalised recommendations