AVE0991, a nonpeptide angiotensin-(1–7) mimic, inhibits angiotensin II–induced abdominal aortic aneurysm formation in apolipoprotein E knockout mice

  • Hui Ma
  • Yu-Lin Wang
  • Nai-Hao Hei
  • Jun-Long Li
  • Xin-Ran Cao
  • Bo DongEmail author
  • Wen-jiang YanEmail author
Original Article


AVE0991, a nonpeptide angiotensin-(1–7) mimic, has similar protective effects for cardiovascular system to Ang-(1–7). In this article, we aimed to explore the effects of AVE0991 and Ang-(1–7) on abdominal aortic aneurysm (AAA) induced by Ang II in apolipoprotein E knockout mice. The mice AAA model was established by Ang II infusion, and then mice received different treatment with saline, Ang II (1.44 mg/kg/day), different dose AVE0991 (0.58 or 1.16 μmol/kg/day), or Ang-(1–7) (400 ng/kg/min). The incidence of AAA was 76%, 48%, 28%, and 24% in the vehicle, the low-dose AVE0991, high-dose AVE0991, and the Ang-(1–7) group, respectively. In comparison with control group, AVE0991 and Ang-(1–7) treatment significantly increased smooth muscle cells and decreased macrophage accumulation, the expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α), and the expression and activity of metalloproteinases 2 and 9 in mice AAA model or in human smooth muscle cells (hVSMCs). The therapeutic effects may be contributed to reduction of oxidative stress and downregulation of P38 and ERK1/2 signal pathways via Mas receptor activation, whereas the positive impacts were reversed by co-administration with the Mas antagonist A779 (400 ng/kg/min) and AVE0991 in Ang II–infused mice or in hVSMCs. Therefore, AVE0991 and Ang-(1–7) might be novel and promising interventions in the prevention and treatment of AAA.

Key messages

• AVE0991 dose-dependently inhibited Ang II–induced AAA formation in Apoe−/− mice.

• Ang-(1–7) played the same protective role as high-dose AVE0991.

• Inhibition of Mas receptor with A779 could reverse the protective effect of AVE0991.

• The therapeutic effects may be contributed to reduction of oxidative stress and downregulation of P38 and ERK1/2 signal pathways via Mas receptor activation.


AVE0991 Angiotensin-(1–7) Abdominal aortic aneurysm Mas receptor Matrix metalloproteinase Inflammation 


Funding information

This work was supported by the National 973 Basic Research Program of China (No. 2013CB530700), National Natural Science Foundation of China (No. 81570729, 81170207, 81500339), Program of State Chinese Medicine Administration Bureau (No. JDZX2012113), and the Key Research & Development Plan of Shandong Province (NO. 2019GSF108013).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

109_2020_1880_MOESM1_ESM.docx (4.6 mb)
ESM 1 (DOCX 4.61 mb)


  1. 1.
    Daugherty A, Cassis LA (2002) Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep 4(3):222–227CrossRefGoogle Scholar
  2. 2.
    Thompson RW, Geraghty PJ, Lee JK (2002) Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg 39(2):110–230CrossRefGoogle Scholar
  3. 3.
    Davis FM, Rateri DL, Daugherty A (2014) Mechanisms of aortic aneurysm formation: translating preclinical studies into clinical therapies. Heart. 100(19):1498–1505CrossRefGoogle Scholar
  4. 4.
    Hellenthal FA, Buurman WA, Wodzig WK, Schurink GW (2009) Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat Rev Cardiol 6(7):464–474CrossRefGoogle Scholar
  5. 5.
    Yokoyama U, Ishiwata R, Jin MH, Kato Y, Suzuki O, Jin H, Ichikawa Y, Kumagaya S, Katayama Y, Fujita T, Okumura S, Sato M, Sugimoto Y, Aoki H, Suzuki S, Masuda M, Minamisawa S, Ishikawa Y (2012) Inhibition of EP4 signaling attenuates aortic aneurysm formation. PLoS One 7(5):e36724CrossRefGoogle Scholar
  6. 6.
    Wang S, Zhang C, Zhang M, Liang B, Zhu H, Lee J, Viollet B, Xia L, Zhang Y, Zou MH (2012) Activation of AMP-activated protein kinase α2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med 18(6):902–910CrossRefGoogle Scholar
  7. 7.
    Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97(8):1916–1923CrossRefGoogle Scholar
  8. 8.
    Browatzki M, Larsen D, Pfeiffer CA, Gehrke SG, Schmidt J, Kranzhofer A, Katus HA, Kranzhofer R (2005) Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-kappaB and activator protein 1 in a redox-sensitive manner. J Vasc Res 42(5):415–423CrossRefGoogle Scholar
  9. 9.
    Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, Dellsperger KC, Weintraub NL (2006) Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation. 114(5):404–413CrossRefGoogle Scholar
  10. 10.
    Daugherty A, Rateri DL, Lu H, Inagami T, Cassis LA (2004) Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation. 110(25):3849–3857CrossRefGoogle Scholar
  11. 11.
    Lu WW, Jia LX, Ni XQ et al (2016) Intermedin1-53 attenuates abdominal aortic aneurysm by inhibiting oxidative stress. Arterioscler Thromb Vasc Biol 36(11):2176–2190CrossRefGoogle Scholar
  12. 12.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277(17):14838–14843CrossRefGoogle Scholar
  13. 13.
    Yang JM, Dong M, Meng X et al (2013) Angiotensin-(1-7) dose-dependently inhibits atherosclerotic lesion formation and enhances plaque stability by targeting vascular cells. Arterioscler Thromb Vasc Biol 33(8):1978–1985CrossRefGoogle Scholar
  14. 14.
    Shimada K, Furukawa H, Wada K, Wei Y, Tada Y, Kuwabara A, Shikata F, Kanematsu Y, Lawton MT, Kitazato KT, Nagahiro S, Hashimoto T (2015) Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab 35(7):1163–1168CrossRefGoogle Scholar
  15. 15.
    Ebermann L, Spillmann F, Sidiropoulos M, Escher F, Heringer-Walther S, Schultheiss HP, Tschöpe C, Walther T (2008) The angiotensin-(1-7) receptor agonist AVE0991 is cardioprotective in diabetic rats. Eur J Pharmacol 590(1–3):276–280CrossRefGoogle Scholar
  16. 16.
    Rodrigues-Machado MG, Magalhães GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, Oliveira ML, Cara DC, Noviello ML, Marques FD, Pereira JM, Lautner RQ, Santos RA, Campagnole-Santos MJ (2013) AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol 170(4):835–846CrossRefGoogle Scholar
  17. 17.
    Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H (2002) AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension. 40(6):847–852CrossRefGoogle Scholar
  18. 18.
    Kong J, Zhang K, Meng X, Zhang Y, Zhang C (2015) Dose-dependent bidirectional effect of angiotensin IV on abdominal aortic aneurysm via variable angiotensin receptor stimulation. Hypertension. 66(3):617–626CrossRefGoogle Scholar
  19. 19.
    Toton-Zuranska J, Gajda M, Pyka-Fosciak G, Kus K, Pawlowska M, Niepsuj A, Wolkow P, Olszanecki R, Jawien J, Korbut R (2010) AVE 0991-angiotensin-(1-7) receptor agonist, inhibits atherogenesis in apoE-knockout mice. J Physiol Pharmacol 61(2):181–183PubMedGoogle Scholar
  20. 20.
    Lee S, Evans MA, Chu HX, Kim HA, Widdop RE, Drummond GR, Sobey CG (2015) Effect of a selective mas receptor agonist in cerebral ischemia in vitro and in vivo. PLoS One 10(11):e0142087CrossRefGoogle Scholar
  21. 21.
    Hashizume R, Yamawaki-Ogata A, Ueda Y, Wagner WR, Narita Y (2011) Mesenchymal stem cells attenuate angiotensin II-induced aortic aneurysm growth in apolipoprotein E-deficient mice. J Vasc Surg 54(6):1743–1752CrossRefGoogle Scholar
  22. 22.
    Martin-McNulty B, Tham DM, da Cunha V et al (2003) 17 Beta-estradiol attenuates development of angiotensin II-induced aortic abdominal aneurysm in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23(9):1627–1632CrossRefGoogle Scholar
  23. 23.
    Hellenthal FA, Buurman WA, Wodzig WK, Schurink GW (2009) Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation. Nat Rev Cardiol 6(8):543–552CrossRefGoogle Scholar
  24. 24.
    Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110(5):625–632CrossRefGoogle Scholar
  25. 25.
    Satoh K, Nigro P, Matoba T, O'Dell MR, Cui Z, Shi X, Mohan A, Yan C, Abe J, Illig KA, Berk BC (2009) Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med 15(6):649–656CrossRefGoogle Scholar
  26. 26.
    Cassis LA, Gupte M, Thayer S, Zhang X, Charnigo R, Howatt DA, Rateri DL, Daugherty A (2009) ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Heart Circ Physiol 296(5):H1660–H1665CrossRefGoogle Scholar
  27. 27.
    Ejiri J, Inoue N, Tsukube T, Munezane T, Hino Y, Kobayashi S, Hirata K, Kawashima S, Imajoh-Ohmi S, Hayashi Y, Yokozaki H, Okita Y, Yokoyama M (2003) Oxidative stress in the pathogenesis of thoracic aortic aneurysm: protective role of statin and angiotensin II type 1 receptor blocker. Cardiovasc Res 59(4):988–996CrossRefGoogle Scholar
  28. 28.
    Miller FJ Jr, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL (2002) Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol 22(4):560–565CrossRefGoogle Scholar
  29. 29.
    Gavrila D, Li WG, McCormick ML et al (2005) Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25(8):1671–1677CrossRefGoogle Scholar
  30. 30.
    Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253(1–2):269–285CrossRefGoogle Scholar
  31. 31.
    Cho A, Graves J, Reidy MA (2000) Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20(12):2527–2532CrossRefGoogle Scholar
  32. 32.
    Aoki H, Yoshimura K, Matsuzaki M (2007) Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy. J Mol Med (Berl) 85(10):1077–1088CrossRefGoogle Scholar
  33. 33.
    Xiong W, Mactaggart J, Knispel R, Worth J, Zhu Z, Li Y, Sun Y, Baxter BT, Johanning J (2009) Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model. Atherosclerosis. 202(1):128–134CrossRefGoogle Scholar
  34. 34.
    Paradis P, Dali-Youcef N, Paradis F et al (2000) Overexpression of angiotensin II type 1 receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci 97:931–936CrossRefGoogle Scholar
  35. 35.
    Rivard K, Grandy SA, Douillette A, Paradis P, Nemer M, Allen BG, Fiset C (2011) Overexpression of type 1 angiotensin II receptors impairs excitation-contraction coupling in the mouse heart. Am J Physiol Heart Circ Physiol 301:H2018–H2027CrossRefGoogle Scholar
  36. 36.
    Zeng WT, Chen WY, Leng XY, Tang LL, Sun XT, Li CL, Dai G (2012) Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991. Cardiovasc Ther 30(3):152–161CrossRefGoogle Scholar
  37. 37.
    Ma Y, Huang H et al (2016) AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress. Biochem Biophys Res Commun 474(4):621–625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pediatrics and Department of CardiologyShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
  2. 2.The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina

Personalised recommendations