Serum starvation enhances nonsense mutation readthrough

  • Amnon Wittenstein
  • Michal Caspi
  • Yifat David
  • Yamit Shorer
  • Prathamesh T. Nadar-Ponniah
  • Rina Rosin-ArbesfeldEmail author
Original Article


Of all genetic mutations causing human disease, premature termination codons (PTCs) that result from splicing defaults, insertions, deletions, and point mutations comprise around 30%. From these mutations, around 11% are a substitution of a single nucleotide that change a codon into a premature termination codon. These types of mutations affect several million patients suffering from a large variety of genetic diseases, ranging from relatively common inheritable cancer syndromes to muscular dystrophy or very rare neuro-metabolic disorders. Over the past three decades, genetic and biochemical studies have revealed that certain antibiotics and other synthetic molecules can act as nonsense mutation readthrough-inducing drugs. These compounds bind a specific site on the rRNA and, as a result, the stop codon is misread and an amino acid (that may or may not differ from the wild-type amino acid) is inserted and translation occurs through the premature termination codon. This strategy has great therapeutic potential. Unfortunately, many readthrough agents are toxic and cannot be administered over the extended period usually required for the chronic treatment of genetic diseases. Furthermore, readthrough compounds only restore protein production in very few disease models and the readthrough levels are usually low, typically achieving no more than 5% of normal protein expression. Efforts have been made over the years to overcome these obstacles so that readthrough treatment can become clinically relevant. Here, we present the creation of a stable cell line system that constitutively expresses our dual-reporter vector harboring two cancer initiating nonsense mutations in the adenomatous polyposis coli (APC) gene. This system will be used as an improved screening method for isolation of new nonsense mutation readthrough inducers. Using these cell lines as well as colorectal cancer cell lines, we demonstrate that serum starvation enhances drug-induced readthrough activity, an observation which may prove beneficial in a therapeutic scenario that requires higher levels of the restored protein.

Key messages

  • Nonsense mutations affects millions of people worldwide.

  • We have developed a nonsense mutation read-through screening tool.

  • We find that serum starvation enhances antibiotic-induced nonsense mutation read-through.

  • Our results suggest new strategies for enhancing nonsense mutation read-through that may have positive effects on a large number of patients.


Nonsense mutations readthrough Premature termination codons (PTCs) Adenomatous polyposis coli (APC) Serum starvation 



We would like to thank the German-Israeli Foundation (GIF) for Scientific Research and Development grant Number 1459 for supporting our work.

Supplementary material

109_2019_1847_MOESM1_ESM.pptx (1.4 mb)
ESM 1 (PPTX 1388 kb)


  1. 1.
    Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8(10):1893–1900PubMedCrossRefGoogle Scholar
  2. 2.
    Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29(8):1037–1047PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen LS, Wilkinson MF, Gecz J (2014) Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 46(Pt 2):175–186PubMedCrossRefGoogle Scholar
  4. 4.
    Burke JF, Mogg AE (1985) Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 13(17):6265–6272PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E (2018) Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol Med 24(1):25PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fan-Minogue H, Bedwell DM (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 14(1):148–157PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chowdhury HM, Siddiqui MA, Kanneganti S, Sharmin N, Chowdhury MW, Nasim MT (2018) Aminoglycoside-mediated promotion of translation readthrough occurs through a non-stochastic mechanism that competes with translation termination. Hum Mol Genet 27(2):373–384. Epub 2017/11/28PubMedCrossRefGoogle Scholar
  8. 8.
    Keeling KM, Xue X, Gunn G, Bedwell DM (2014) Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 15:371–394PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Perez B, Rodriguez-Pombo P, Ugarte M, Desviat LR (2012) Readthrough strategies for therapeutic suppression of nonsense mutations in inherited metabolic disease. Mol Syndromol 3(5):230–236PubMedPubMedCentralGoogle Scholar
  10. 10.
    Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E (2015) Translational readthrough potential of natural termination codons in eucaryotes--The impact of RNA sequence. RNA Biol 12(9):950–958PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Shulman E, Belakhov V, Wei G, Kendall A, Meyron-Holtz EG, Ben-Shachar D, Schacht J, Baasov T (2014) Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases. J Biol Chem 289(4):2318–2330PubMedCrossRefGoogle Scholar
  12. 12.
    Xue X, Mutyam V, Tang L, Biswas S, Du M, Jackson LA, Dai Y, Belakhov V, Shalev M, Chen F, Schacht J, R JB, Baasov T, Hong J, Bedwell DM, Rowe SM (2014) Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Respir Cell Mol Biol 50(4):805–816PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gatti RA (2012) SMRT compounds correct nonsense mutations in primary immunodeficiency and other genetic models. Ann N Y Acad Sci 1250:33–40PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(6):2064-9. Scholar
  15. 15.
    Zilberberg A, Lahav L, Rosin-Arbesfeld R (2010) Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut. 59(4):496–507PubMedCrossRefGoogle Scholar
  16. 16.
    Arakawa M, Shiozuka M, Nakayama Y, Hara T, Hamada M, Kondo S, Ikeda D, Takahashi Y, Sawa R, Nonomura Y, Sheykholeslami K, Kondo K, Kaga K, Kitamura T, Suzuki-Miyagoe Y, Takeda S, Matsuda R (2003) Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 134(5):751–758PubMedCrossRefGoogle Scholar
  17. 17.
    Baradaran-Heravi A, Balgi AD, Zimmerman C, Choi K, Shidmoossavee FS, Tan JS, Bergeaud C, Krause A, Flibotte S, Shimizu Y, Anderson HJ, Mouly V, Jan E, Pfeifer T, Jaquith JB, Roberge M (2016) Novel small molecules potentiate premature termination codon readthrough by aminoglycosides. Nucleic Acids Res 44(14):6583–6598PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sogaard TM, Jakobsen CG, Justesen J (1999) A sensitive assay of translational fidelity (readthrough and termination) in eukaryotic cells. Biochemistry (Mosc) 64(12):1408–1417Google Scholar
  19. 19.
    Bidou L, Hatin I, Perez N, Allamand V, Panthier JJ, Rousset JP (2004) Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 11(7):619–627PubMedCrossRefGoogle Scholar
  20. 20.
    Auld DS, Thorne N, Maguire WF, Inglese J. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3585-90. Scholar
  21. 21.
    Halvey PJ, Liebler DC, Slebos RJ (2012) A reporter system for translational readthrough of stop codons in human cells. FEBS Open Bio 2:56–59PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hofhuis J, Dieterle S, George R, Schueren F, Thoms S (2017) Dual reporter systems for the analysis of translational readthrough in mammals. Methods Mol Biol 1595:81–92PubMedCrossRefGoogle Scholar
  23. 23.
    Du L, Damoiseaux R, Nahas S, Gao K, Hu H, Pollard JM, Goldstine J, Jung ME, Henning SM, Bertoni C, Gatti RA (2009) Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med 206(10):2285–2297PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Caspi M, Firsow A, Rajkumar R, Skalka N, Moshkovitz I, Munitz A, Pasmanik-Chor M, Greif H, Megido D, Kariv R, Rosenberg DW, Rosin-Arbesfeld R (2016) A flow cytometry-based reporter assay identifies macrolide antibiotics as nonsense mutation read-through agents. J Mol Med (Berl) 94(4):469–482CrossRefGoogle Scholar
  25. 25.
    Liu B, Han Y, Qian SB (2013) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49(3):453–463PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Higashi S, Kabuta T, Nagai Y, Tsuchiya Y, Akiyama H, Wada K (2013) TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress. J Neurochem 126(2):288–300PubMedCrossRefGoogle Scholar
  27. 27.
    Bukowy-Bieryllo Z, Dabrowski M, Witt M, Zietkiewicz E (2016) Aminoglycoside-stimulated readthrough of premature termination codons in selected genes involved in primary ciliary dyskinesia. RNA Biol 13(10):1041–1050PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tan L, Narayan SB, Chen J, Meyers GD, Bennett MJ (2011) PTC124 improves readthrough and increases enzymatic activity of the CPT1A R160X nonsense mutation. J Inherit Metab Dis 34(2):443–447PubMedCrossRefGoogle Scholar
  29. 29.
    Goldmann T, Overlack N, Wolfrum U, Nagel-Wolfrum K (2011) PTC124-mediated translational readthrough of a nonsense mutation causing Usher syndrome type 1C. Hum Gene Ther 22(5):537–547. Epub 2011/01/18PubMedCrossRefGoogle Scholar
  30. 30.
    Sarkar C, Zhang Z, Mukherjee AB. Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Molecular genetics and metabolism. 2011;104(3):338-45. Scholar
  31. 31.
    Matalonga L, Arias A, Tort F, Ferrer-Cortes X, Garcia-Villoria J, Coll MJ, Gort L, Ribes A (2015) Effect of readthrough treatment in fibroblasts of patients affected by lysosomal diseases caused by premature termination codons. Neurotherapeutics. PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pibiri I, Lentini L, Melfi R, Gallucci G, Pace A, Spinello A, Barone G, Di Leonardo A (2015) Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives. Eur J Med Chem 101:236–244. Epub 2015/07/06PubMedCrossRefGoogle Scholar
  33. 33.
    Zomer-van Ommen DD, Vijftigschild LA, Kruisselbrink E, Vonk AM, Dekkers JF, Janssens HM, de Winter-de Groot KM, van der Ent CK, Beekman JM (2015) Limited premature termination codon suppression by read-through agents in cystic fibrosis intestinal organoids. J Cyst Fibros. PubMedCrossRefGoogle Scholar
  34. 34.
    McElroy SP, Nomura T, Torrie LS, Warbrick E, Gartner U, Wood G, McLean WH (2013) A lack of premature termination codon read-through efficacy of PTC124 (Ataluren) in a diverse array of reporter assays. PLoS Biol 11(6):e1001593PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dranchak PK, Di Pietro E, Snowden A, Oesch N, Braverman NE, Steinberg SJ, Hacia JG (2011) Nonsense suppressor therapies rescue peroxisome lipid metabolism and assembly in cells from patients with specific PEX gene mutations. J Cell Biochem 112(5):1250–1258PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Harmer SC, Mohal JS, Kemp D, Tinker A (2012) Readthrough of long-QT syndrome type 1 nonsense mutations rescues function but alters the biophysical properties of the channel. Biochem J 443(3):635–642PubMedCrossRefGoogle Scholar
  37. 37.
    Brumm H, Muhlhaus J, Bolze F, Scherag S, Hinney A, Hebebrand J, Wiegand S, Klingenspor M, Gruters A, Krude H, Biebermann H (2012) Rescue of melanocortin 4 receptor (MC4R) nonsense mutations by aminoglycoside-mediated read-through. Obesity (Silver Spring) 20(5):1074–1081CrossRefGoogle Scholar
  38. 38.
    Koopmann TT, Verkerk AO, Bezzina CR, de Bakker JM, Wilde AA (2012) The chemical compound PTC124 does not affect cellular electrophysiology of cardiac ventricular myocytes. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy 26(1):41–45CrossRefGoogle Scholar
  39. 39.
    Gomez-Grau M, Garrido E, Cozar M, Rodriguez-Sureda V, Dominguez C, Arenas C, Gatti RA, Cormand B, Grinberg D, Vilageliu L (2015) Evaluation of aminoglycoside and non-aminoglycoside compounds for stop-codon readthrough therapy in four lysosomal storage diseases. PLoS One 10(8):e0135873PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Floquet C, Hatin I, Rousset JP, Bidou L (2012) Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet 8(3):e1002608PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zheng X, Baker H, Hancock WS, Fawaz F, McCaman M, Pungor E Jr (2006) Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog 22(5):1294–1300PubMedCrossRefGoogle Scholar
  42. 42.
    Lemli B, Derdak D, Laczay P, Kovacs D, Kunsagi-Mate S (2018) Noncovalent interaction of tilmicosin with bovine serum albumin. Molecules 23(8). PubMedCentralCrossRefGoogle Scholar
  43. 43.
    Siddiqi MK, Alam P, Chaturvedi SK, Nusrat S, Ajmal MR, Abdelhameed AS, Khan RH (2017) Probing the interaction of cephalosporin antibiotic-ceftazidime with human serum albumin: A biophysical investigation. Int J Biol Macromol 105(Pt 1):292–299PubMedCrossRefGoogle Scholar
  44. 44.
    Li X, Wang Y, Wang H, Huang C, Huang Y, Li J (2015) Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis. Inflamm Res 64(1):1–7PubMedCrossRefGoogle Scholar
  45. 45.
    Yoshida H (2007) ER stress and diseases. FEBS J 274(3):630–658PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P (2017) Endoplasmic reticulum stress and eIF2alpha phosphorylation: The Achilles heel of pancreatic beta cells. Mol Metab 6(9):1024–1039PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Manuvakhova M, Keeling K, Bedwell DM (2000) Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6(7):1044–1055PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Schneikert J, Behrens J (2007) The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56(3):417–425PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bennett HL, Fleming JT, O’Prey J, Ryan KM, Leung HY (2010) Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells. Cell Death Dis 1:e72PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Moon JL, Kim SY, Shin SW, Park JW (2012) Regulation of brefeldin A-induced ER stress and apoptosis by mitochondrial NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun 417(2):760–764PubMedCrossRefGoogle Scholar
  51. 51.
    Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 10(11):1324–1332PubMedCrossRefGoogle Scholar
  52. 52.
    Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, Tousson A, Clancy JP, Sorscher EJ (1997) Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 3(11):1280–1284PubMedCrossRefGoogle Scholar
  53. 53.
    Malik V, Rodino-Klapac LR, Viollet L, Wall C, King W, Al-Dahhak R, Lewis S, Shilling CJ, Kota J, Serrano-Munuera C, Hayes J, Mahan JD, Campbell KJ, Banwell B, Dasouki M, Watts V, Sivakumar K, Bien-Willner R, Flanigan KM, Sahenk Z, Barohn RJ, Walker CM, Mendell JR (2010) Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol 67(6):771–780PubMedGoogle Scholar
  54. 54.
    Wagner KR, Hamed S, Hadley DW, Gropman AL, Burstein AH, Escolar DM, Hoffman EP, Fischbeck KH (2001) Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 49(6):706–711PubMedCrossRefGoogle Scholar
  55. 55.
    Bidou L, Bugaud O, Belakhov V, Baasov T, Namy O (2017) Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells. RNA Biol 14(3):378–388PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, Schacht J, Pilch DS, Ben-Yosef T, Baasov T (2009) Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem 52(9):2836–2845PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hainrichson M, Nudelman I, Baasov T (2008) Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Org Biomol Chem 6(2):227–239PubMedCrossRefGoogle Scholar
  58. 58.
    Kerem E (2004) Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr Opin Pulm Med 10(6):547–552PubMedCrossRefGoogle Scholar
  59. 59.
    Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5(2):89–99PubMedCrossRefGoogle Scholar
  60. 60.
    Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE (2004) Nonsense-mediated decay approaches the clinic. Nat Genet 36(8):801–808PubMedCrossRefGoogle Scholar
  61. 61.
    Valley HC, Bukis KM, Bell A, Cheng Y, Wong E, Jordan NJ, Allaire NE, Sivachenko A, Liang F, Bihler H, Thomas PJ, Mahiou J, Mense M (2018) Isogenic cell models of cystic fibrosis-causing variants in natively expressing pulmonary epithelial cells. J Cyst Fibros. PubMedCrossRefGoogle Scholar
  62. 62.
    Linde L, Boelz S, Nissim-Rafinia M, Oren YS, Wilschanski M, Yaacov Y, Virgilis D, Neu-Yilik G, Kulozik AE, Kerem E, Kerem B (2007) Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 117(3):683–692PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Harada N, Hatakeyama A, Okuyama M, Miyatake Y, Nakagawa T, Kuroda M, Masumoto S, Tsutsumi R, Nakaya Y, Sakaue H (2018) Readthrough of ACTN3 577X nonsense mutation produces full-length alpha-actinin-3 protein. Biochem Biophys Res Commun 502(3):422–428PubMedCrossRefGoogle Scholar
  64. 64.
    Ferguson MW, Gerak CAN, Chow CCT, Rastelli EJ, Elmore KE, Stahl F, Hosseini-Farahabadi S, Baradaran-Heravi A, Coltart DM, Roberge M (2019) The antimalarial drug mefloquine enhances TP53 premature termination codon readthrough by aminoglycoside G418. PLoS One 14(5):e0216423PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kubo H, Takamura K, Nagaya N, Ohgushi H (2018) The effect of serum on the proliferation of bone marrow-derived mesenchymal stem cells from aged donors and donors with or without chronic heart failure. J Tissue Eng Regen Med 12(1):e395–e3e7PubMedCrossRefGoogle Scholar
  66. 66.
    Shi Y, Felley-Bosco E, Marti TM, Orlowski K, Pruschy M, Stahel RA (2012) Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer 12:571PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Senichkin VV, Kopeina GS, Prokhorova EA, Zamaraev AV, Lavrik IN, Zhivotovsky B (2018) Modulation of Mcl-1 transcription by serum deprivation sensitizes cancer cells to cisplatin. Biochim Biophys Acta Gen Subj 1862(3):557–566PubMedCrossRefGoogle Scholar
  68. 68.
    Gandin V, Sikstrom K, Alain T, Morita M, McLaughlan S, Larsson O, Topisirovic I. Polysome fractionation and analysis of mammalian translatomes on a genome-wide scale. J Vis Exp. 2014(87).
  69. 69.
    Perrone-Bizzozero N, Iapalucci-Espinoza S, Medrano EE, Franze-Fernandez MT (1985) Transcription of ribosomal RNA is differentially controlled in resting and growing BALB/c 3 T3 cells. J Cell Physiol 124(1):160–164PubMedCrossRefGoogle Scholar
  70. 70.
    Zheng N, Wang K, He J, Qiu Y, Xie G, Su M, Jia W, Li H (2016) Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells. Sci Rep 6:25892PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Burian A, Wagner C, Stanek J, Manafi M, Bohmdorfer M, Jager W, Zeitlinger M (2011) Plasma protein binding may reduce antimicrobial activity by preventing intra-bacterial uptake of antibiotics, for example clindamycin. J Antimicrob Chemother 66(1):134–137PubMedCrossRefGoogle Scholar
  72. 72.
    Zhou X, Liao WJ, Liao JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7(2):92–104PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart J, Ling J (2017) Heterogeneity of stop codon readthrough in single bacterial cells and implications for population fitness. Mol Cell 67(5):826–36 e5PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amnon Wittenstein
    • 1
  • Michal Caspi
    • 1
  • Yifat David
    • 1
  • Yamit Shorer
    • 1
  • Prathamesh T. Nadar-Ponniah
    • 1
    • 2
  • Rina Rosin-Arbesfeld
    • 1
    Email author
  1. 1.Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations