Journal of Molecular Medicine

, Volume 97, Issue 5, pp 675–690 | Cite as

Activation of NF-κB in B cell receptor signaling through Bruton’s tyrosine kinase-dependent phosphorylation of IκB-α

  • Marilena Pontoriero
  • Giuseppe FiumeEmail author
  • Eleonora Vecchio
  • Annamaria de Laurentiis
  • Francesco Albano
  • Enrico Iaccino
  • Selena Mimmi
  • Antonio Pisano
  • Valter Agosti
  • Emilia Giovannone
  • Annalisa Altobelli
  • Carmen Caiazza
  • Massimo Mallardo
  • Giuseppe Scala
  • Ileana QuintoEmail author
Original Article


The antigen-mediated triggering of B cell receptor (BCR) activates the transcription factor NF-κB that regulates the expression of genes involved in B cell differentiation, proliferation, and survival. The tyrosine kinase Btk is essentially required for the activation of NF-κB in BCR signaling through the canonical pathway of IKK-dependent phosphorylation and proteasomal degradation of IκB-α, the main repressor of NF-κB. Here, we provide the evidence of an additional mechanism of NF-κB activation in BCR signaling that is Btk-dependent and IKK-independent. In DeFew B lymphoma cells, the anti-IgM stimulation of BCR activated Btk and NF-κB p50/p65 within 0.5 min in absence of IKK activation and IκB-α degradation. IKK silencing did not affect the rapid activation of NF-κB. Within this short time, Btk associated and phosphorylated IκB-α at Y289 and Y305, and, concomitantly, p65 translocated from cytosol to nucleus. The mutant IκB-α Y289/305A inhibited the NF-κB activation after BCR triggering, suggesting that the phosphorylation of IκB-α at tyrosines 289 and 305 was required for NF-κB activation. In primary chronic lymphocytic leukemia cells, Btk was constitutively active and associated with IκB-α, which correlated with Y305-phosphorylation of IκB-α and increased NF-κB activity compared with healthy B cells. Altogether, these results describe a novel mechanism of NF-κB activation in BCR signaling that could be relevant for Btk-targeted therapy in B-lymphoproliferative disorders.

Key messages

  • Anti-IgM stimulation of BCR activates NF-κB p50/p65 within 30 s by a Btk-dependent and IKK-independent mechanism.

  • Btk associates and phosphorylates IκB-α at Y289 and Y305, promoting NF-κB activation.

  • In primary CLLs, the binding of Btk to IκB-α correlates with tyrosine phosphorylation of IκB-α and increased NF-κB activity.


B-cell receptor NF-κB BTK IκB-α tyrosine phosphorylation 


Author contribution

M.P. and G.F. analyzed the physical and functional interactions of Btk and IκB-α in the DeFew and CLL cells; M.P. generated the appropriate mutants; E.V. performed gene expression microarray and ChIP; F.A., A.P., E.I., and S.M. produced expression vectors; V.A. and E.G. gave technical advice for flow cytometry; C.C., A.A., and M.M. performed some Western blottings; I.Q., G.S., and G.F. conceived the experimental plan and wrote the manuscript.

Funding information

This work was supported by the following grants: Ministero della Salute RF-2010-2306943 (to G. S.), MIUR-POR CALABRIA FSE 2007/2013 (to G. S.), MIUR-PRIN 2012CK5RPF (to G. S.), MIUR-PRIN 2006052835_004 and MIUR-PRIN 2012CK5RPF_002 (to I. Q.), and MIUR-Finanziamento individuale attività base di ricerca (to G. F.). S. M. was supported by a fellowship from the Fondazione Italiana per la Ricerca sul Cancro.

Compliance with ethical standards

Ethics statements

Experiments involving human subjects were approved by the Italian Regional “Calabria” Ethics Committee (Protocol N. 75, 23/03/17), in accordance with the ethical and safety rules and guidelines provided by the relevant Italian laws (art. 4–5 of D.lgs 116/92, DD.MM. of 29/09/1995 and 26/04/2000), and in accordance with the ethical guidelines of the European Community Council (directive n. 86/609/ECC). Blood samples from healthy donors or CLL patients were obtained upon written and oral informed consent from the participants to the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

109_2019_1777_MOESM1_ESM.docx (353 kb)
ESM 1 (DOCX 352 kb)


  1. 1.
    Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5:392–401CrossRefGoogle Scholar
  2. 2.
    Hinz M, Scheidereit C (2014) The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep 15:46–61CrossRefGoogle Scholar
  3. 3.
    Liu F, Xia Y, Parker AS, Verma IM (2012) IKK biology. Immunol Rev 246:239–253CrossRefGoogle Scholar
  4. 4.
    Sun SC (2017) The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol 17:545–558CrossRefGoogle Scholar
  5. 5.
    Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L (2017) NF-kappaB members left home: NF-kappaB-independent roles in cancer. Biomedicines 5(2):E26Google Scholar
  6. 6.
    Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597CrossRefGoogle Scholar
  7. 7.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa] B activity. Annu Rev Immunol 18:621–663CrossRefGoogle Scholar
  8. 8.
    Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB (2003) Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278:24233–24241CrossRefGoogle Scholar
  9. 9.
    Abu-Amer Y, Ross FP, McHugh KP, Livolsi A, Peyron JF et al (1998) Tumor necrosis factor-alpha activation of nuclear transcription factor-kappaB in marrow macrophages is mediated by c-Src tyrosine phosphorylation of Ikappa Balpha. J Biol Chem 273:29417–29423CrossRefGoogle Scholar
  10. 10.
    Fan C, Li Q, Ross D, Engelhardt JF (2003) Tyrosine phosphorylation of I kappa B alpha activates NF kappa B through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. J Biol Chem 278:2072–2080CrossRefGoogle Scholar
  11. 11.
    Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB et al (1996) Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86:787–798CrossRefGoogle Scholar
  12. 12.
    Livolsi A, Busuttil V, Imbert V, Abraham RT, Peyron JF (2001) Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur J Biochem 268:1508–1515CrossRefGoogle Scholar
  13. 13.
    Herzog S, Reth M, Jumaa H (2009) Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9:195–205CrossRefGoogle Scholar
  14. 14.
    Hendriks RW, Yuvaraj S, Kil LP (2014) Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer 14:219–232CrossRefGoogle Scholar
  15. 15.
    Hobeika E, Nielsen PJ, Medgyesi D (2015) Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med (Berl) 93:143–158CrossRefGoogle Scholar
  16. 16.
    Hodson DJ, Turner M (2009) The role of PI3K signalling in the B cell response to antigen. Adv Exp Med Biol 633:43–53CrossRefGoogle Scholar
  17. 17.
    Tarafdar A, Michie AM (2014) Protein kinase C in cellular transformation: a valid target for therapy? Biochem Soc Trans 42:1556–1562CrossRefGoogle Scholar
  18. 18.
    Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R et al (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228:58–73CrossRefGoogle Scholar
  19. 19.
    Janda E, Palmieri C, Pisano A, Pontoriero M, Iaccino E, Falcone C, Fiume G, Gaspari M, Nevolo M, di Salle E, Rossi A, de Laurentiis A, Greco A, di Napoli D, Verheij E, Britti D, Lavecchia L, Quinto I, Scala G (2011) Btk regulation in human and mouse B cells via protein kinase C phosphorylation of IBtkgamma. Blood 117:6520–6531CrossRefGoogle Scholar
  20. 20.
    Liu W, Quinto I, Chen X, Palmieri C, Rabin RL, Schwartz OM, Nelson DL, Scala G (2001) Direct inhibition of Bruton’s tyrosine kinase by IBtk, a Btk-binding protein. Nat Immunol 2:939–946CrossRefGoogle Scholar
  21. 21.
    Spatuzza C, Schiavone M, Di Salle E, Janda E, Sardiello M et al (2008) Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton’s tyrosine kinase: evidence for three protein isoforms of IBtk. Nucleic Acids Res 36:4402–4416CrossRefGoogle Scholar
  22. 22.
    Eswaran J, Sinclair P, Heidenreich O, Irving J, Russell LJ, Hall A, Calado DP, Harrison CJ, Vormoor J (2015) The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 29:1623–1631CrossRefGoogle Scholar
  23. 23.
    Seda V, Mraz M (2015) B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 94:193–205CrossRefGoogle Scholar
  24. 24.
    Roskoski R Jr (2016) Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms. Pharmacol Res 113:395–408CrossRefGoogle Scholar
  25. 25.
    Giordano V, De Falco G, Chiari R, Quinto I, Pelicci PG et al (1997) Shc mediates IL-6 signaling by interacting with gp130 and Jak2 kinase. J Immunol 158:4097–4103Google Scholar
  26. 26.
    Mimmi S, Vecchio E, Iaccino E, Rossi M, Lupia A, Albano F, Chiurazzi F, Fiume G, Pisano A, Ceglia S, Pontoriero M, Golino G, Tassone P, Quinto I, Scala G, Palmieri C (2016) Evidence of shared epitopic reactivity among independent B-cell clones in chronic lymphocytic leukemia patients. Leukemia 30:2419–2422CrossRefGoogle Scholar
  27. 27.
    Albano F, Chiurazzi F, Mimmi S, Vecchio E, Pastore A, Cimmino C, Frieri C, Iaccino E, Pisano A, Golino G, Fiume G, Mallardo M, Scala G, Quinto I (2018) The expression of inhibitor of bruton’s tyrosine kinase gene is progressively up regulated in the clinical course of chronic lymphocytic leukaemia conferring resistance to apoptosis. Cell Death Dis 9:13CrossRefGoogle Scholar
  28. 28.
    Fiume G, Scialdone A, Rizzo F, De Filippo MR, Laudanna C, et al. (2016) IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells. Int J Mol Sci 17(11):E1848Google Scholar
  29. 29.
    Pisano A, Ceglia S, Palmieri C, Vecchio E, Fiume G, de Laurentiis A, Mimmi S, Falcone C, Iaccino E, Scialdone A, Pontoriero M, Masci FF, Valea R, Krishnan S, Gaspari M, Cuda G, Scala G, Quinto I (2015) CRL3IBTK regulates the tumor suppressor Pdcd4 through ubiquitylation coupled to proteasomal degradation. J Biol Chem 290:13958–13971CrossRefGoogle Scholar
  30. 30.
    Puca A, Fiume G, Palmieri C, Trimboli F, Olimpico F, Scala G, Quinto I (2007) IkappaB-alpha represses the transcriptional activity of the HIV-1 tat transactivator by promoting its nuclear export. J Biol Chem 282:37146–37157CrossRefGoogle Scholar
  31. 31.
    Capasso A, Cerchia C, Di Giovanni C, Granato G, Albano F et al (2015) Ligand-based chemoinformatic discovery of a novel small molecule inhibitor targeting CDC25 dual specificity phosphatases and displaying in vitro efficacy against melanoma cells. Oncotarget 6:40202–40222Google Scholar
  32. 32.
    Palmieri C, Trimboli F, Puca A, Fiume G, Scala G, Quinto I (2004) Inhibition of HIV-1 replication in primary human monocytes by the IkappaB-alphaS32/36A repressor of NF-kappaB. Retrovirology 1:45CrossRefGoogle Scholar
  33. 33.
    Schiavone M, Fiume G, Caivano A, de Laurentiis A, Falcone C, Masci FF, Iaccino E, Mimmi S, Palmieri C, Pisano A, Pontoriero M, Rossi A, Scialdone A, Vecchio E, Andreozzi C, Trovato M, Rafay J, Ferko B, Montefiori D, Lombardi A, Morsica G, Poli G, Quinto I, Pavone V, de Berardinis P, Scala G (2012) Design and characterization of a peptide mimotope of the HIV-1 gp120 bridging sheet. Int J Mol Sci 13:5674–5699CrossRefGoogle Scholar
  34. 34.
    Vitagliano L, Fiume G, Scognamiglio PL, Doti N, Cannavo R et al (2011) Structural and functional insights into IkappaB-alpha/HIV-1 tat interaction. Biochimie 93:1592–1600CrossRefGoogle Scholar
  35. 35.
    Fiume G, Rossi A, de Laurentiis A, Falcone C, Pisano A, Vecchio E, Pontoriero M, Scala I, Scialdone A, Masci FF, Mimmi S, Palmieri C, Scala G, Quinto I (2013) Eukaryotic initiation factor 4H is under transcriptional control of p65/NF-kappaB. PLoS One 8:e66087CrossRefGoogle Scholar
  36. 36.
    Fiume G, Scialdone A, Albano F, Rossi A, Tuccillo FM et al (2015) Impairment of T cell development and acute inflammatory response in HIV-1 tat transgenic mice. Sci Rep 5:13864CrossRefGoogle Scholar
  37. 37.
    de Laurentiis A, Gaspari M, Palmieri C, Falcone C, Iaccino E, Fiume G, Massa O, Masullo M, Tuccillo FM, Roveda L, Prati U, Fierro O, Cozzolino I, Troncone G, Tassone P, Scala G, Quinto I (2011) Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. Mol Cell Proteomics 10:M111 007898CrossRefGoogle Scholar
  38. 38.
    D’Agostino M, Risselada HJ, Endter LJ, Comte-Miserez V, Mayer A (2018) SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. EMBO J 37:e99193CrossRefGoogle Scholar
  39. 39.
    Savarese M, Spinelli E, Gandolfo F, Lemma V, Di Fruscio G et al (2014) Familial exudative vitreoretinopathy caused by a homozygous mutation in TSPAN12 in a cystic fibrosis infant. Ophthalmic Genet 35:184–186CrossRefGoogle Scholar
  40. 40.
    Takada Y, Aggarwal BB (2004) TNF activates Syk protein tyrosine kinase leading to TNF-induced MAPK activation, NF-kappaB activation, and apoptosis. J Immunol 173:1066–1077CrossRefGoogle Scholar
  41. 41.
    Gallagher D, Gutierrez H, Gavalda N, O’Keeffe G, Hay R, Davies AM (2007) Nuclear factor-kappaB activation via tyrosine phosphorylation of inhibitor kappaB-alpha is crucial for ciliary neurotrophic factor-promoted neurite growth from developing neurons. J Neurosci 27:9664–9669CrossRefGoogle Scholar
  42. 42.
    Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ (2000) Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 164:2200–2206CrossRefGoogle Scholar
  43. 43.
    Frenzel LP, Claus R, Plume N, Schwamb J, Konermann C, Pallasch CP, Claasen J, Brinker R, Wollnik B, Plass C, Wendtner CM (2011) Sustained NF-kappaB activity in chronic lymphocytic leukemia is independent of genetic and epigenetic alterations in the TNFAIP3 (A20) locus. Int J Cancer 128:2495–2500CrossRefGoogle Scholar
  44. 44.
    DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554CrossRefGoogle Scholar
  45. 45.
    Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866CrossRefGoogle Scholar
  46. 46.
    Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z et al (1997) Identification and characterization of an IkappaB kinase. Cell 90:373–383CrossRefGoogle Scholar
  47. 47.
    Esparza-Lopez J, Medina-Franco H, Escobar-Arriaga E, Leon-Rodriguez E, Zentella-Dehesa A et al (2013) Doxorubicin induces atypical NF-kappaB activation through c-Abl kinase activity in breast cancer cells. J Cancer Res Clin Oncol 139:1625–1635CrossRefGoogle Scholar
  48. 48.
    Kawai H, Nie L, Yuan ZM (2002) Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Mol Cell Biol 22:6079–6088CrossRefGoogle Scholar
  49. 49.
    Singh S, Aggarwal BB (1995) Protein-tyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear transcription factor NF-kappa B. J Biol Chem 270:10631–10639CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marilena Pontoriero
    • 1
  • Giuseppe Fiume
    • 1
    Email author
  • Eleonora Vecchio
    • 1
  • Annamaria de Laurentiis
    • 1
  • Francesco Albano
    • 1
  • Enrico Iaccino
    • 1
  • Selena Mimmi
    • 1
  • Antonio Pisano
    • 1
  • Valter Agosti
    • 1
  • Emilia Giovannone
    • 1
  • Annalisa Altobelli
    • 2
  • Carmen Caiazza
    • 2
  • Massimo Mallardo
    • 2
  • Giuseppe Scala
    • 1
  • Ileana Quinto
    • 1
    Email author
  1. 1.Department of Clinical and Experimental MedicineUniversity of Catanzaro “Magna Græcia”CatanzaroItaly
  2. 2.Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations