Advertisement

Journal of Molecular Medicine

, Volume 97, Issue 6, pp 761–775 | Cite as

Regenerative potential of adipocytes in hypertrophic scars is mediated by myofibroblast reprogramming

  • Katharina Hoerst
  • Lenie van den Broek
  • Christoph Sachse
  • Oliver Klein
  • Uwe von Fritschen
  • Sue Gibbs
  • Sarah HedtrichEmail author
Original Article

Abstract

Abnormal scarring is a major challenge in modern medicine. The central role of myofibroblasts and TGF-β signaling in scarring is widely accepted, but effective treatment options are missing. Autologous fat grafting is a novel approach that has led to significant improvements in the functionality and appearance of scar tissue. While the underlying mechanism is unknown, the potential role of paracrine effects of adipocytes has been discussed. Hence, with the aim of unraveling the regenerative potential of adipocytes, their effects on in vitro differentiated myofibroblasts and on fibroblasts from hypertrophic scars were investigated. Exposure to adipocyte-conditioned medium significantly decreased the expression of the myofibroblast marker α-SMA and ECM components, indicating the occurrence of myofibroblast reprogramming. Further analysis demonstrated that myofibroblast reprogramming was triggered by BMP-4 and activation of PPARγ signaling initiating tissue remodeling. These findings may pave the way for novel therapeutic strategies for the prevention or treatment of hypertrophic scars.

Key messages

  • Adipocytes induce distinct regenerative effects in hypertrophic scar tissue.

  • Adipocytes secrete several proteins which are involved in wound healing and regeneration.

  • Adipocytes secrete BMP-4 which activates myofibroblast reprogramming.

  • Mediators secreted by adipocytes directly and indirectly activate PPARγ which exerts distinct anti-fibrotic effects.

  • These findings may pave the way for novel therapeutic strategies for the prevention or treatment of hypertrophic scars.

Keywords

Myofibroblast Wound healing Hypertrophic scar Adipocyte Bone morphogenetic protein 

Notes

Acknowledgments

The authors thank Patrick Graff and Maria Thon for technical assistance. Moreover, the authors would like to acknowledge the support of Anja Briese and Dr. Christoph Sachse (NMI TT Pharmaservices).

Author contributions

K.H., G.E., and O.K. performed experiments. S.H., L.v.B. (at VUmc), and S.G. (at VUmc) supervised the work. K.H. and S.H. designed the experiments, analyzed the data, and wrote the manuscript. All the authors provided critical review of the manuscript.

Funding information

This work was financially supported by the Einstein Center for Regenerative Therapies (ECRTs) and the Berlin-Brandenburg School for Regenerative Therapies (BSRT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

109_2019_1772_MOESM1_ESM.xlsx (46 kb)
ESM 1 (XLSX 45 kb)
109_2019_1772_MOESM2_ESM.pdf (595 kb)
ESM 2 (PDF 595 kb)

References

  1. 1.
    Mokos ZB, Jovic A, Grgurevic L, Dumic-Cule I, Kostovic K, Ceovic R, Marinovic B (2017) Current therapeutic approach to hypertrophic scars. Front Med (Lausanne) 4:83CrossRefGoogle Scholar
  2. 2.
    Hinz B (2016) The role of myofibroblasts in wound healing. Curr Res Transl Med 64(4):171–177CrossRefGoogle Scholar
  3. 3.
    Sarrazy V, Billet F, Micallef L, Coulomb B, Desmouliere A (2011) Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen 19(Suppl 1):s10–s15CrossRefGoogle Scholar
  4. 4.
    Hecker L, Jagirdar R, Jin T, Thannickal VJ (2011) Reversible differentiation of myofibroblasts by MyoD. Exp Cell Res 317(13):1914–1921CrossRefGoogle Scholar
  5. 5.
    Garrison G, Huang SK, Okunishi K, Scott JP, Kumar Penke LR, Scruggs AM, Peters-Golden M (2013) Reversal of myofibroblast differentiation by prostaglandin E(2). Am J Respir Cell Mol Biol 48(5):550–558CrossRefGoogle Scholar
  6. 6.
    Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, Shao M, Gay DL, Ramos R, Hsi TC et al (2017) Regeneration of fat cells from myofibroblasts during wound healing. Science 355(6326):748–752CrossRefGoogle Scholar
  7. 7.
    Klinger M, Marazzi M, Vigo D, Torre M (2008) Fat injection for cases of severe burn outcomes: a new perspective of scar remodeling and reduction. Aesthet Plast Surg 32(3):465–469CrossRefGoogle Scholar
  8. 8.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRefGoogle Scholar
  9. 9.
    Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24CrossRefGoogle Scholar
  10. 10.
    Zhang Q, Liu LN, Yong Q, Deng JC, Cao WG (2015) Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther 6:145CrossRefGoogle Scholar
  11. 11.
    Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853CrossRefGoogle Scholar
  12. 12.
    Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH (2015) Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 16(3):4581–4599CrossRefGoogle Scholar
  13. 13.
    Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123(6):993–999CrossRefGoogle Scholar
  14. 14.
    Ghosh AK, Bhattacharyya S, Lakos G, Chen SJ, Mori Y, Varga J (2004) Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma. Arthritis Rheum 50(4):1305–1318CrossRefGoogle Scholar
  15. 15.
    Zheng F, Fornoni A, Elliot SJ, Guan Y, Breyer MD, Striker LJ, Striker GE (2002) Upregulation of type I collagen by TGF-β in mesangial cells is blocked by PPARγ activation. Am J Physiol Renal Physiol 282(4):F639–F648CrossRefGoogle Scholar
  16. 16.
    Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, Joos TO, Kling S, Poetz O, Fehm T (2016) A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun 7:12852CrossRefGoogle Scholar
  17. 17.
    Becker M, Maring JA, Schneider M, Herrera Martin AX, Seifert M, Klein O, Braun T, Falk V, Stamm C (2018) Towards a novel patch material for cardiac applications: tissue-specific extracellular matrix introduces essential key features to decellularized amniotic membrane. Int J Mol Sci 19(4):1032CrossRefGoogle Scholar
  18. 18.
    Ojima K, Oe M, Nakajima I, Muroya S, Nishimura T (2016) Dynamics of protein secretion during adipocyte differentiation. FEBS Open Bio 6(8):816–826CrossRefGoogle Scholar
  19. 19.
    Zvonic S, Lefevre M, Kilroy G, Floyd ZE, DeLany JP, Kheterpal I, Gravois A, Dow R, White A, Wu X et al (2007) Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics 6(1):18–28Google Scholar
  20. 20.
    Alvarez-Llamas G, Szalowska E, de Vries MP, Weening D, Landman K, Hoek A, Wolffenbuttel BHR, Roelofsen H, Vonk RJ (2007) Characterization of the human visceral adipose tissue secretome. Mol Cell Proteomics 6(4):589–600CrossRefGoogle Scholar
  21. 21.
    Zhong J, Krawczyk SA, Chaerkady R, Huang H, Goel R, Bader JS, Wong GW, Corkey BE, Pandey A (2010) Temporal profiling of the secretome during adipogenesis in humans. J Proteome Res 9(10):5228–5238CrossRefGoogle Scholar
  22. 22.
    Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827CrossRefGoogle Scholar
  23. 23.
    Schmidt BA, Horsley V (2013) Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140(7):1517–1527CrossRefGoogle Scholar
  24. 24.
    Salathia NS, Shi J, Zhang J, Glynne RJ (2013) An in vivo screen of secreted proteins identifies adiponectin as a regulator of murine cutaneous wound healing. J Invest Dermatol 133(3):812–821CrossRefGoogle Scholar
  25. 25.
    Frank S, Stallmeyer B, Kämpfer H, Kolb N, Pfeilschifter J (2000) Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J Clin Invest 106(4):501–509CrossRefGoogle Scholar
  26. 26.
    Klinger M, Caviggioli F, Klinger FM, Giannasi S, Bandi V, Banzatti B, Forcellini D, Maione L, Catania B, Vinci V (2013) Autologous fat graft in scar treatment. J Craniofac Surg 24(5):1610–1615CrossRefGoogle Scholar
  27. 27.
    Chevallet M, Diemer H, Van Dorssealer A, Villiers C, Rabilloud T (2007) Toward a better analysis of secreted proteins: the example of the myeloid cells secretome. Proteomics 7(11):1757–1770CrossRefGoogle Scholar
  28. 28.
    Spiekman M, Przybyt E, Plantinga JA, Gibbs S, van der Lei B, Harmsen MC (2014) Adipose tissue-derived stromal cells inhibit TGF-beta1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion. Plast Reconstr Surg 134(4):699–712CrossRefGoogle Scholar
  29. 29.
    Verhoekx JS, Mudera V, Walbeehm ET, Hovius SE (2013) Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren’s disease. Plast Reconstr Surg 132(5):1139–1148CrossRefGoogle Scholar
  30. 30.
    Li Y, Zhang W, Gao J, Liu J, Wang H, Li J, Yang X, He T, Guan H, Zheng Z et al (2016) Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res Ther 7(1):102CrossRefGoogle Scholar
  31. 31.
    Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288(6):L1146–L1153CrossRefGoogle Scholar
  32. 32.
    Aoki Y, Maeno T, Aoyagi K, Ueno M, Aoki F, Aoki N, Nakagawa J, Sando Y, Shimizu Y, Suga T et al (2009) Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis. Respiration 77(3):311–319CrossRefGoogle Scholar
  33. 33.
    Wei J, Ghosh AK, Sargent JL, Komura K, Wu M, Huang QQ, Jain M, Whitfield ML, Feghali-Bostwick C, Varga J (2010) PPARgamma downregulation by TGFss in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One 5(11):e13778CrossRefGoogle Scholar
  34. 34.
    Chou YT, Wang H, Chen Y, Danielpour D, Yang YC (2006) Cited2 modulates TGF-beta-mediated upregulation of MMP9. Oncogene 25(40):5547–5560CrossRefGoogle Scholar
  35. 35.
    Tien ES, Davis JW, Vanden Heuvel JP (2004) Identification of the CREB-binding protein/p300-interacting protein CITED2 as a peroxisome proliferator-activated receptor alpha coregulator. J Biol Chem 279(23):24053–24063CrossRefGoogle Scholar
  36. 36.
    Zhang C, Niu C, Yang K, Shaker A (2018) Human esophageal myofibroblast secretion of bone morphogenetic proteins and GREMLIN1 and paracrine regulation of squamous epithelial growth. Sci Rep 8(1):12354CrossRefGoogle Scholar
  37. 37.
    McVicker BL, Bennett RG (2017) Novel anti-fibrotic therapies. Front Pharmacol 8:318CrossRefGoogle Scholar
  38. 38.
    Shlyonsky V, Soussia IB, Naeije R, Mies F (2011) Opposing effects of bone morphogenetic protein-2 and endothelin-1 on lung fibroblast chloride currents. Am J Respir Cell Mol Biol 45(6):1154–1160CrossRefGoogle Scholar
  39. 39.
    Pegorier S, Campbell GA, Kay AB, Lloyd CM (2010) Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-beta1 in normal human lung fibroblasts (NHLF). Respir Res 11:85CrossRefGoogle Scholar
  40. 40.
    Ghosh AK, Vaughan DE (2012) PAI-1 in tissue fibrosis. J Cell Physiol 227(2):493–507CrossRefGoogle Scholar
  41. 41.
    Schreiber I, Dorpholz G, Ott CE, Kragesteen B, Schanze N, Lee CT, Kohrle J, Mundlos S, Ruschke K, Knaus P (2017) BMPs as new insulin sensitizers: enhanced glucose uptake in mature 3T3-L1 adipocytes via PPARgamma and GLUT4 upregulation. Sci Rep 7(1):17192CrossRefGoogle Scholar
  42. 42.
    Huang H, Song T-J, Li X, Hu L, He Q, Liu M, Lane MD, Tang Q-Q (2009) BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci 106(31):12670–12675CrossRefGoogle Scholar
  43. 43.
    Hammarstedt A, Hedjazifar S, Jenndahl L, Gogg S, Grunberg J, Gustafson B, Klimcakova E, Stich V, Langin D, Laakso M et al (2013) WISP2 regulates preadipocyte commitment and PPARgamma activation by BMP4. Proc Natl Acad Sci U S A 110(7):2563–2568CrossRefGoogle Scholar
  44. 44.
    Wertheimer T, Velardi E, Tsai J, Cooper K, Xiao S, Kloss CC, Ottmuller KJ, Mokhtari Z, Brede C, deRoos P et al (2018) Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci Immunol 3(19); doi: 10.1126/sciimmunol.aal2736Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Pharmaceutical Sciences, Pharmacology and ToxicologyFreie Universität BerlinBerlinGermany
  2. 2.Department of DermatologyVU University Medical CenterAmsterdamThe Netherlands
  3. 3.NMI TT PharmaservicesBerlinGermany
  4. 4.Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  5. 5.Division of Plastic Surgery and Hand SurgeryHelios ClinicBerlinGermany
  6. 6.University of British Columbia, Faculty of Pharmaceutical SciencesVancouverCanada

Personalised recommendations