Mitochondrial complex I deficiency and cardiovascular diseases: current evidence and future directions

  • Maurizio ForteEmail author
  • Silvia Palmerio
  • Franca Bianchi
  • Massimo Volpe
  • Speranza RubattuEmail author


Compelling evidence demonstrates the emerging role of mitochondrial complex I deficiency in the onset and development of cardiovascular diseases (CVDs). In particular, defects in single subunits of mitochondrial complex I have been associated with cardiac hypertrophy, ischemia/reperfusion injury, as well as diabetic complications and stroke in pre-clinical studies. Moreover, data obtained in humans revealed that genes coding for complex I proteins were associated with different CVDs. In this review, we discuss recent experimental studies that underline the contributory role of mitochondrial complex I deficiency in the etiopathogenesis of several CVDs, with a particular focus on those involving loss of function models of mitochondrial complex I. We also discuss human studies and potential therapeutic strategies able to rescue mitochondrial function in CVDs.


Mitochondrial complex I Mitochondrial dysfunction Cardiovascular diseases Therapeutic interventions Cardiac hypertrophy Stroke 



This work was supported by grants from the Italian Ministry of Health and the “5 per mille” grant.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594:509–525CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    El-Hattab AW, Suleiman J, Almannai M, Scaglia F (2018) Mitochondrial dynamics: biological roles, molecular machinery, and related diseases. Mol Genet Metab 125:315–321CrossRefPubMedGoogle Scholar
  4. 4.
    Marin-Garcia J, Akhmedov AT (2016) Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev 21:123–136CrossRefPubMedGoogle Scholar
  5. 5.
    Ghezzi D, Zeviani M (2018) Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem 62:271–286CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fassone E, Rahman S (2012) Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet 49:578–590CrossRefPubMedGoogle Scholar
  7. 7.
    Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K et al (2018) Mitochondria and cardiovascular diseases—from pathophysiology to treatment. Ann Transl Med 6:256CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP (2014) The breathing heart—mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol 171:134–143CrossRefPubMedGoogle Scholar
  9. 9.
    Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515CrossRefPubMedGoogle Scholar
  10. 10.
    Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388CrossRefPubMedGoogle Scholar
  11. 11.
    Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13CrossRefPubMedGoogle Scholar
  13. 13.
    Scialo F, Sriram A, Fernandez-Ayala D, Gubina N, Lohmus M, Nelson G, Logan A, Cooper HM, Navas P, Enriquez JA et al (2016) Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab 23:725–734CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006) Mitochondrial complex I: structural and functional aspects. Biochim Biophys Acta 1757:1406–1420CrossRefPubMedGoogle Scholar
  15. 15.
    Lenaz G, Tioli G, Falasca AI, Genova ML (2016) Complex I function in mitochondrial supercomplexes. Biochim Biophys Acta 1857:991–1000CrossRefPubMedGoogle Scholar
  16. 16.
    Wirth C, Brandt U, Hunte C, Zickermann V (2016) Structure and function of mitochondrial complex I. Biochim Biophys Acta 1857:902–914CrossRefPubMedGoogle Scholar
  17. 17.
    Scheffler IE (2015) Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. J Inherit Metab Dis 38:405–415CrossRefPubMedGoogle Scholar
  18. 18.
    Ortigoza-Escobar JD, Oyarzabal A, Montero R, Artuch R, Jou C, Jimenez C, Gort L, Briones P, Muchart J, Lopez-Gallardo E et al (2016) Ndufs4 related Leigh syndrome: a case report and review of the literature. Mitochondrion 28:73–78CrossRefPubMedGoogle Scholar
  19. 19.
    Arun S, Liu L, Donmez G (2016) Mitochondrial biology and neurological diseases. Curr Neuropharmacol 14:143–154CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mailloux RJ, Jin X, Willmore WG (2014) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139CrossRefPubMedGoogle Scholar
  21. 21.
    Piantadosi CA (2012) Regulation of mitochondrial processes by protein S-nitrosylation. Biochim Biophys Acta 1820:712–721CrossRefPubMedGoogle Scholar
  22. 22.
    Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J Biol Chem 283:24801–24815CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Galkin A, Moncada S (2007) S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem 282:37448–37453CrossRefPubMedGoogle Scholar
  24. 24.
    Chinta SJ, Andersen JK (2011) Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease. Free Radic Res 45:53–58CrossRefPubMedGoogle Scholar
  25. 25.
    Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16:1323–1367CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Irwin MH, Parameshwaran K, Pinkert CA (2013) Mouse models of mitochondrial complex I dysfunction. Int J Biochem Cell Biol 45:34–40CrossRefPubMedGoogle Scholar
  27. 27.
    Chouchani ET, Methner C, Buonincontri G, Hu CH, Logan A, Sawiak SJ, Murphy MP, Krieg T (2014) Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy. PLoS One 9:e94157CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC Jr, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R (2013) Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 18:239–250CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hu H, Nan J, Sun Y, Zhu D, Xiao C, Wang Y, Zhu L, Wu Y, Zhao J, Wu R et al (2017) Electron leak from NDUFA13 within mitochondrial complex I attenuates ischemia-reperfusion injury via dimerized STAT3. Proc Natl Acad Sci U S A 114:11908–11913CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ke BX, Pepe S, Grubb DR, Komen JC, Laskowski A, Rodda FA, Hardman BM, Pitt JJ, Ryan MT, Lazarou M et al (2012) Tissue-specific splicing of an Ndufs6 gene-trap insertion generates a mitochondrial complex I deficiency-specific cardiomyopathy. Proc Natl Acad Sci U S A 109:6165–6170CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rubattu S, Di Castro S, Schulz H, Geurts AM, Cotugno M, Bianchi F, Maatz H, Hummel O, Falak S, Stanzione R et al (2016) Ndufc2 gene inhibition is associated with mitochondrial dysfunction and increased stroke susceptibility in an animal model of complex human disease. J Am Heart Assoc 5.
  32. 32.
    Zhang H, Gong G, Wang P, Zhang Z, Kolwicz SC, Rabinovitch PS, Tian R, Wang W (2018) Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. J Mol Cell Cardiol 123:38–45CrossRefPubMedGoogle Scholar
  33. 33.
    Kuksal N, Gardiner D, Qi D, Mailloux RJ (2018) Partial loss of complex I due to NDUFS4 deficiency augments myocardial reperfusion damage by increasing mitochondrial superoxide/hydrogen peroxide production. Biochem Biophys Res Commun 498:214–220CrossRefPubMedGoogle Scholar
  34. 34.
    Ingraham CA, Burwell LS, Skalska J, Brookes PS, Howell RL, Sheu SS, Pinkert CA (2009) NDUFS4: creation of a mouse model mimicking a Complex I disorder. Mitochondrion 9:204–210CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283CrossRefPubMedGoogle Scholar
  36. 36.
    Weeks KL, McMullen JR (2011) The athlete's heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology 26:97–105CrossRefPubMedGoogle Scholar
  37. 37.
    Baines CP (2010) The cardiac mitochondrion: nexus of stress. Annu Rev Physiol 72:61–80CrossRefPubMedGoogle Scholar
  38. 38.
    Conti V, Forte M, Corbi G, Russomanno G, Formisano L, Landolfi A, Izzo V, Filippelli A, Vecchione C, Carrizzo A (2017) Sirtuins: possible clinical implications in cardio and cerebrovascular diseases. Curr Drug Targets 18:473–484CrossRefPubMedGoogle Scholar
  39. 39.
    Koentges C, Bode C, Bugger H (2016) SIRT3 in cardiac physiology and disease. Front Cardiovasc Med 3:38CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 105:14447–14452CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tao R, Vassilopoulos A, Parisiadou L, Yan Y, Gius D (2014) Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal 20:1646–1654CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li J, Chen T, Xiao M, Li N, Wang S, Su H, Guo X, Liu H, Yan F, Yang Y et al (2016) Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget 7:86648–86659PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chalker J, Gardiner D, Kuksal N, Mailloux RJ (2018) Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria. Redox Biol 15:216–227CrossRefPubMedGoogle Scholar
  45. 45.
    Mailloux RJ, Xuan JY, McBride S, Maharsy W, Thorn S, Holterman CE, Kennedy CR, Rippstein P, deKemp R, da Silva J et al (2014) Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions. J Biol Chem 289:14812–14828CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wust RC, de Vries HJ, Wintjes LT, Rodenburg RJ, Niessen HW, Stienen GJ (2016) Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure. Cardiovasc Res 111:362–372CrossRefPubMedGoogle Scholar
  47. 47.
    Griffiths ER, Friehs I, Scherr E, Poutias D, McGowan FX, Del Nido PJ (2010) Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes cardiomyocyte apoptosis independent of oxidative stress. J Thorac Cardiovasc Surg 139:1609–1617CrossRefPubMedGoogle Scholar
  48. 48.
    Panth N, Paudel KR, Parajuli K (2016) Reactive oxygen species: a key hallmark of cardiovascular disease. In: Adv Med, vol 2016, pp 1–12Google Scholar
  49. 49.
    Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401CrossRefPubMedGoogle Scholar
  50. 50.
    Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Xu J, Bian X, Liu Y, Hong L, Teng T, Sun Y, Xu Z (2017) Adenosine A2 receptor activation ameliorates mitochondrial oxidative stress upon reperfusion through the posttranslational modification of NDUFV2 subunit of complex I in the heart. Free Radic Biol Med 106:208–218CrossRefPubMedGoogle Scholar
  52. 52.
    Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19:753–759CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59CrossRefPubMedGoogle Scholar
  54. 54.
    Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141CrossRefPubMedGoogle Scholar
  55. 55.
    Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM (2014) SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Phys Heart Circ Phys 306:H1602–H1609Google Scholar
  56. 56.
    Li J, Bai C, Guo J, Liang W, Long J (2017) NDUFA4L2 protects against ischaemia/reperfusion-induced cardiomyocyte apoptosis and mitochondrial dysfunction by inhibiting complex I. Clin Exp Pharmacol Physiol 44:779–786CrossRefPubMedGoogle Scholar
  57. 57.
    Ziaeian B, Fonarow GC (2016) Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13:368–378CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535CrossRefPubMedGoogle Scholar
  59. 59.
    Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Luscher TF, Bart B, Banasiak W, Niegowska J et al (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 361:2436–2448CrossRefPubMedGoogle Scholar
  60. 60.
    Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM, Rostami F, Reboll MR, Heineke J, Flogel U et al (2017) Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J 38:362–372PubMedGoogle Scholar
  61. 61.
    Gaber R, Kotb NA, Ghazy M, Nagy HM, Salama M, Elhendy A (2012) Tissue Doppler and strain rate imaging detect improvement of myocardial function in iron deficient patients with congestive heart failure after iron replacement therapy. Echocardiography 29:13–18CrossRefPubMedGoogle Scholar
  62. 62.
    Rineau E, Gaillard T, Gueguen N, Procaccio V, Henrion D, Prunier F, Lasocki S (2018) Iron deficiency without anemia is responsible for decreased left ventricular function and reduced mitochondrial complex I activity in a mouse model. Int J Cardiol 266:206–212CrossRefPubMedGoogle Scholar
  63. 63.
    Leon BM, Maddox TM (2015) Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 6:1246–1258CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS (2015) Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 16:25234–25263CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Vazquez EJ, Berthiaume JM, Kamath V, Achike O, Buchanan E, Montano MM, Chandler MP, Miyagi M, Rosca MG (2015) Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc Res 107:453–465CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sethumadhavan S, Vasquez-Vivar J, Migrino RQ, Harmann L, Jacob HJ, Lazar J (2012) Mitochondrial DNA variant for complex I reveals a role in diabetic cardiac remodeling. J Biol Chem 287:22174–22182CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hu Y, Suarez J, Fricovsky E, Wang H, Scott BT, Trauger SA, Han W, Hu Y, Oyeleye MO, Dillmann WH (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284:547–555CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gibbs WS, Weber RA, Schnellmann RG, Adkins DL (2016) Disrupted mitochondrial genes and inflammation following stroke. Life Sci 166:139–148CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, Chuang YC (2011) Roles of oxidative stress, apoptosis, PGC-1alpha and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rubattu S, Stanzione R, Volpe M (2016) Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxidative Med Cell Longev 2016:1067801CrossRefGoogle Scholar
  71. 71.
    Rubattu S, Volpe M, Kreutz R, Ganten U, Ganten D, Lindpaintner K (1996) Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nat Genet 13:429–434CrossRefPubMedGoogle Scholar
  72. 72.
    Wang P, Miao CY (2015) NAMPT as a therapeutic target against stroke. Trends Pharmacol Sci 36:891–905CrossRefPubMedGoogle Scholar
  73. 73.
    Zhao Y, Liu XZ, Tian WW, Guan YF, Wang P, Miao CY (2014) Extracellular visfatin has nicotinamide phosphoribosyltransferase enzymatic activity and is neuroprotective against ischemic injury. CNS Neurosci Ther 20:539–547CrossRefPubMedGoogle Scholar
  74. 74.
    Wang P, Vanhoutte PM, Miao CY (2012) Visfatin and cardio-cerebro-vascular disease. J Cardiovasc Pharmacol 59:1–9CrossRefPubMedGoogle Scholar
  75. 75.
    Raffa S, Scrofani C, Valente S, Micaloni A, Forte M, Bianchi F, Coluccia R, Geurts AM, Sciarretta S, Volpe M et al (2017) In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH: ubiquinone oxidoreductase Ndufc2 subunit. Hum Mol Genet 26:4541–4555CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ohkubo R, Nakagawa M, Ikeda K, Kodama T, Arimura K, Akiba S, Saito M, Ookatsu Y, Atsuchi Y, Yamano Y et al (2002) Cerebrovascular disorders and genetic polymorphisms: mitochondrial DNA5178C is predominant in cerebrovascular disorders. J Neurol Sci 198:31–35CrossRefPubMedGoogle Scholar
  77. 77.
    Chen J, Hattori Y, Nakajima K, Eizawa T, Ehara T, Koyama M, Hirai T, Fukuda Y, Kinoshita M, Sugiyama A et al (2006) Mitochondrial complex I activity is significantly decreased in a patient with maternally inherited type 2 diabetes mellitus and hypertrophic cardiomyopathy associated with mitochondrial DNA C3310T mutation: a cybrid study. Diabetes Res Clin Pract 74:148–153CrossRefPubMedGoogle Scholar
  78. 78.
    Gershoni M, Levin L, Ovadia O, Toiw Y, Shani N, Dadon S, Barzilai N, Bergman A, Atzmon G, Wainstein J et al (2014) Disrupting mitochondrial-nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol Evol 6:2665–2680CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Olsson AH, Ronn T, Ladenvall C, Parikh H, Isomaa B, Groop L, Ling C (2011) Two common genetic variants near nuclear-encoded OXPHOS genes are associated with insulin secretion in vivo. Eur J Endocrinol 164:765–771CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y et al (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61:3322–3332CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Guo LJ, Oshida Y, Fuku N, Takeyasu T, Fujita Y, Kurata M, Sato Y, Ito M, Tanaka M (2005) Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity. Mitochondrion 5:15–33CrossRefPubMedGoogle Scholar
  82. 82.
    Fuku N, Park KS, Yamada Y, Nishigaki Y, Cho YM, Matsuo H, Segawa T, Watanabe S, Kato K, Yokoi K et al (2007) Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet 80:407–415CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fassone E, Taanman JW, Hargreaves IP, Sebire NJ, Cleary MA, Burch M, Rahman S (2011) Mutations in the mitochondrial complex I assembly factor NDUFAF1 cause fatal infantile hypertrophic cardiomyopathy. J Med Genet 48:691–697CrossRefPubMedGoogle Scholar
  84. 84.
    Dunning CJ, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26:3227–3237CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Vogel RO, Smeitink JA, Nijtmans LG (2007) Human mitochondrial complex I assembly: a dynamic and versatile process. Biochim Biophys Acta 1767:1215–1227CrossRefPubMedGoogle Scholar
  86. 86.
    Benit P, Beugnot R, Chretien D, Giurgea I, De Lonlay-Debeney P, Issartel JP, Corral-Debrinski M, Kerscher S, Rustin P, Rotig A et al (2003) Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat 21:582–586CrossRefPubMedGoogle Scholar
  87. 87.
    Janssen R, Smeitink J, Smeets R, van Den Heuvel L (2002) CIA30 complex I assembly factor: a candidate for human complex I deficiency? Hum Genet 110:264–270CrossRefPubMedGoogle Scholar
  88. 88.
    Fragaki K, Chaussenot A, Boutron A, Bannwarth S, Rouzier C, Chabrol B, Paquis-Flucklinger V (2017) Assembly defects of multiple respiratory chain complexes in a child with cardiac hypertrophy associated with a novel ACAD9 mutation. Mol Genet Metab 121:224–226CrossRefPubMedGoogle Scholar
  89. 89.
    Loeffen J, Elpeleg O, Smeitink J, Smeets R, Stockler-Ipsiroglu S, Mandel H, Sengers R, Trijbels F, van den Heuvel L (2001) Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol 49:195–201CrossRefPubMedGoogle Scholar
  90. 90.
    Ayalon N, Flore LA, Christensen TG, Sam F (2013) Mitochondrial encoded NADH dehydrogenase 5 (MT-ND5) gene point mutation presents as late onset cardiomyopathy. Int J Cardiol 167:e143–e145CrossRefPubMedGoogle Scholar
  91. 91.
    Han GX, Xia L, Li SS, Jin QH, Song Y, Shen H, Wang LL, Kong LJ, Li TS, Zhu HY (2017) The association between the C5263T mutation in the mitochondrial ND2 gene and coronary heart disease among young Chinese Han people. Biomed Environ Sci 30:280–287PubMedGoogle Scholar
  92. 92.
    Kanaan GN, Ichim B, Gharibeh L, Maharsy W, Patten DA, Xuan JY, Reunov A, Marshall P, Veinot J, Menzies K et al (2018) Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies. Redox Biol 14:509–521CrossRefPubMedGoogle Scholar
  93. 93.
    Bayeva M, Gheorghiade M, Ardehali H (2013) Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 61:599–610CrossRefPubMedGoogle Scholar
  94. 94.
    Yu E, Mercer J, Bennett M (2012) Mitochondria in vascular disease. Cardiovasc Res 95:173–182CrossRefPubMedGoogle Scholar
  95. 95.
    Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JG, Colucci WS, Butler J, Voors AA et al (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14:238–250CrossRefPubMedGoogle Scholar
  96. 96.
    Ajith TA, Jayakumar TG (2014) Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J Cardiol 6:1091–1099CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656CrossRefPubMedGoogle Scholar
  98. 98.
    Gioscia-Ryan RA, Battson ML, Cuevas LM, Eng JS, Murphy MP, Seals DR (2018) Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. J Appl Physiol 124:1194–1202CrossRefPubMedGoogle Scholar
  99. 99.
    Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, Woodward KA, Chonchol M, Gioscia-Ryan RA, Murphy MP et al (2018) Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71:1056–1063CrossRefPubMedGoogle Scholar
  100. 100.
    Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG et al (2009) Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J 96:1388–1398CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Finichiu PG, Larsen DS, Evans C, Larsen L, Bright TP, Robb EL, Trnka J, Prime TA, James AM, Smith RA et al (2015) A mitochondria-targeted derivative of ascorbate: MitoC. Free Radic Biol Med 89:668–678CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Jameson VJ, Cocheme HM, Logan A, Hanton LR, Smith RA, Murphy MP (2015) Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahedron 71:8444–8453CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lu HI, Huang TH, Sung PH, Chen YL, Chua S, Chai HY, Chung SY, Liu CF, Sun CK, Chang HW et al (2016) Administration of antioxidant peptide SS-31 attenuates transverse aortic constriction-induced pulmonary arterial hypertension in mice. Acta Pharmacol Sin 37:589–603CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K (2016) Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail 9:e002206. CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Eirin A, Ebrahimi B, Kwon SH, Fiala JA, Williams BJ, Woollard JR, He Q, Gupta RC, Sabbah HN, Prakash YS et al (2016) Restoration of mitochondrial cardiolipin attenuates cardiac damage in swine renovascular hypertension. J Am Heart Assoc 5.
  106. 106.
    Sabbah HN, Gupta RC, Singh-Gupta V, Zhang K, Lanfear DE (2018) Abnormalities of mitochondrial dynamics in the failing heart: normalization following long-term therapy with elamipretide. Cardiovasc Drugs Ther 32:319–328CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58:73–82CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Dai DF, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, Beyer RP, Crispin DA, Shulman NJ, Szeto HH et al (2013) Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail 6:1067–1076CrossRefPubMedGoogle Scholar
  109. 109.
    Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS, O'Connor C, Goldstein S, Udelson JE, Sabbah HN (2017) Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ Heart Fail 10.
  110. 110.
    Kim EH, Tolhurst AT, Szeto HH, Cho SH (2015) Targeting CD36-mediated inflammation reduces acute brain injury in transient, but not permanent, ischemic stroke. CNS Neurosci Ther 21:385–391CrossRefPubMedGoogle Scholar
  111. 111.
    Skulachev VP (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72:1385–1396CrossRefGoogle Scholar
  112. 112.
    Bakeeva LE, Barskov IV, Egorov MV, Isaev NK, Kapelko VI, Kazachenko AV, Kirpatovsky VI, Kozlovsky SV, Lakomkin VL, Levina SB et al (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc) 73:1288–1299CrossRefGoogle Scholar
  113. 113.
    Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B et al (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1alpha-SIRT3 signaling. Sci Rep 7:41337CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Zhou H, Yue Y, Wang J, Ma Q, Chen Y (2018) Melatonin therapy for diabetic cardiomyopathy: a mechanism involving Syk-mitochondrial complex I-SERCA pathway. Cell Signal 47:88–100CrossRefPubMedGoogle Scholar
  115. 115.
    Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G et al (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 58:61–70CrossRefPubMedGoogle Scholar
  116. 116.
    Brand MD, Goncalves RL, Orr AL, Vargas L, Gerencser AA, Borch Jensen M, Wang YT, Melov S, Turk CN, Matzen JT et al (2016) Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab 24:582–592CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Walker MA, Tian R (2018) Raising NAD in heart failure: time to translate? Circulation 137:2274–2277CrossRefPubMedGoogle Scholar
  118. 118.
    Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, Gouge A, Gressette M, Manoury B, Blanc J et al (2018) Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137:2256–2273CrossRefPubMedGoogle Scholar
  119. 119.
    Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A, Gupta MP (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285:3133–3144CrossRefPubMedGoogle Scholar
  120. 120.
    Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, Luo T (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull 121:9–15CrossRefPubMedGoogle Scholar
  121. 121.
    Li YG, Zhu W, Tao JP, Xin P, Liu MY, Li JB, Wei M (2013) Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun 438:270–276CrossRefPubMedGoogle Scholar
  122. 122.
    Zhang Y, Li XR, Zhao L, Duan GL, Xiao L, Chen HP (2018) DJ-1 preserving mitochondrial complex I activity plays a critical role in resveratrol-mediated cardioprotection against hypoxia/reoxygenation-induced oxidative stress. Biomed Pharmacother 98:545–552CrossRefPubMedGoogle Scholar
  123. 123.
    Shinmura K, Tamaki K, Sano M, Nakashima-Kamimura N, Wolf AM, Amo T, Ohta S, Katsumata Y, Fukuda K, Ishiwata K et al (2011) Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 109:396–406CrossRefPubMedGoogle Scholar
  124. 124.
    Finckenberg P, Eriksson O, Baumann M, Merasto S, Lalowski MM, Levijoki J, Haasio K, Kyto V, Muller DN, Luft FC et al (2012) Caloric restriction ameliorates angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy. Hypertension 59:76–84CrossRefPubMedGoogle Scholar
  125. 125.
    Park SY, Rossman MJ, Gifford JR, Bharath LP, Bauersachs J, Richardson RS, Abel ED, Symons JD, Riehle C (2016) Exercise training improves vascular mitochondrial function. Am J Phys Heart Circ Phys 310:H821–H829Google Scholar
  126. 126.
    Kraljevic J, Marinovic J, Pravdic D, Zubin P, Dujic Z, Wisloff U, Ljubkovic M (2013) Aerobic interval training attenuates remodelling and mitochondrial dysfunction in the post-infarction failing rat heart. Cardiovasc Res 99:55–64CrossRefPubMedGoogle Scholar
  127. 127.
    Pepe S, Mentzer RM Jr, Gottlieb RA (2014) Cell-permeable protein therapy for complex I dysfunction. J Bioenerg Biomembr 46:337–345CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Perry CN, Huang C, Liu W, Magee N, Carreira RS, Gottlieb RA (2011) Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury. PLoS One 6:e16288CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Mentzer RM Jr, Wider J, Perry CN, Gottlieb RA (2014) Reduction of infarct size by the therapeutic protein TAT-Ndi1 in vivo. J Cardiovasc Pharmacol Ther 19:315–320CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AngiocardioneurologyIRCCS NeuromedPozzilliItaly
  2. 2.Department of Clinical and Molecular Medicine, School of Medicine and PsychologySapienza University of Rome, Ospedale S. AndreaRomeItaly

Personalised recommendations