Journal of Molecular Medicine

, Volume 97, Issue 4, pp 541–552 | Cite as

Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice

  • Yanning Li
  • Fang Chen
  • Ai Wei
  • Fangfang Bi
  • Xiaobo Zhu
  • Shasha Yin
  • Wenjun Lin
  • Wangsen CaoEmail author
Original Article


Renal fibrosis is a common histomorphological feature of renal aging and chronic kidney diseases of all etiologies, and its initiation and progression are substantially influenced by aberrant epigenetic modifications of fibrosis-susceptible genes, yet without effective therapy. “Epigenetic diets” exhibit tissue-protective and epigenetic-modulating properties; however, their anti-renal fibrosis functions and the underlying mechanisms are less understood. In this study, we show that genistein, a phytoestrogenic isoflavone enriched in dietary soy products, exhibits impressive anti-renal fibrosis activities by recovering epigenetic loss of Klotho, a kidney-enriched anti-aging and fibrosis-suppressing protein. Mouse fibrotic kidneys induced by UUO (unilateral ureteral occlusion) displayed severer Klotho suppression and adverse expression of renal fibrosis-associated proteins, but genistein administration markedly recovered the Klotho loss and attenuated renal fibrosis and the protein expression abnormalities. The examination of possible causes of the Klotho recovery revealed that genistein simultaneously inhibited histone 3 deacetylation of Klotho promoter and normalized the promoter DNA hypermethylation by suppressing elevated DNA methyltransferase DNMT1 and DNMT3a. More importantly, genistein’s anti-renal fibrosis effects on the renal fibrotic lesions and the abnormal expressions of fibrosis-associated proteins were abrogated when Klotho is knockdown by RNA interferences in UUO mice. Thus, our results identify Klotho restoration via epigenetic histone acetylation and DNA demethylation as a critical mechanism of genistein’s anti-fibrosis function and shed new lights on the potentials of epigenetic diets in preventing or treating aging or renal fibrosis-associated kidney diseases.

Key messages

  • Genistein prevents renal fibrosis and the associated Klotho suppression in UUO mice.

  • Genistein upregulates Klotho in part by reversing the promoter histone 3 hypoacetylation.

  • Genistein also preserves Klotho via relieving Klotho promoter hypermethylation.

  • Genistein demethylates Klotho promoter by inhibiting aberrant DNMT1/3a expression.

  • Genistein restoration of Klotho is essential for its anti-renal fibrosis function.


Renal fibrosis Klotho Genistein Epigenetics DNA methylation Protein acetylation 


Funding information

This work was supported by research grants from the National Nature Science Foundation of China (81470940 and 81670762).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu YH (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217CrossRefGoogle Scholar
  2. 2.
    Woroniecki R, Gaikwad AB, Susztak K (2011) Fetal environment, epigenetics, and pediatric renal disease. Pediatr Nephrol 26:705–711CrossRefGoogle Scholar
  3. 3.
    Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS (2013) Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 33:363–374CrossRefGoogle Scholar
  4. 4.
    Ko Y-A, Mohtat D, Suzuki M, Park ASD, Izquierdo MC, Han SY, Kang HM, Si H, Hostetter T, Pullman JM, Fazzari M, Verma A, Zheng D, Greally JM, Susztak K (2013) Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 14:R108CrossRefGoogle Scholar
  5. 5.
    Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ (2014) DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9:366–376CrossRefGoogle Scholar
  6. 6.
    Nguyễn-Thanh TKD, Lee S, Kim W, Park SK, Kang KP (2018) Inhibition of histone deacetylase 1 ameliorates renal tubulointerstitial fibrosis via modulation of inflammation and extracellular matrix gene transcription in mice. Int J Mol Med 41:95–106Google Scholar
  7. 7.
    Kumar PGV, Periasamy R, Raghavaraju G, Subramanian U, Pandey KN (2017) Inhibition of HDAC enhances STAT acetylation, blocks NF-κB, and suppresses the renal inflammation and fibrosis in Npr1 haplotype male mice. Am J Physiol Renal Physiol 313:F781–F795CrossRefGoogle Scholar
  8. 8.
    Reddy MA, Natarajan R (2015) Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 88:250–261CrossRefGoogle Scholar
  9. 9.
    Marumo T, Hishikawa K, Yoshikawa M, Fujita T (2008) Epigenetic regulation of BMP7 in the regenerative response to ischemia. J Am Soc Nephrol 19:1311–1320CrossRefGoogle Scholar
  10. 10.
    Zhang Q, Yin S, Liu L, Liu Z, Cao W (2016) Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice. Sci Rep 6.
  11. 11.
    Tampe B, Tampe D, Muller CA, Sugimoto H, LeBleu V, Xu X, Muller GA, Zeisberg EM, Kalluri R, Zeisberg M (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 25:905–912CrossRefGoogle Scholar
  12. 12.
    Vahid FZH, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562:8–15CrossRefGoogle Scholar
  13. 13.
    Senanayake GVBA, Wu L, Lee P, Juurlink BH (2012) The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens 25:229–235CrossRefGoogle Scholar
  14. 14.
    Hu YML, Yang F, Tu H, Lin W (2016) Curcumin attenuates cyclosporine A-induced renal fibrosis by inhibiting hypermethylation of the Klotho promoter. Mol Med Rep 14:3229–3236CrossRefGoogle Scholar
  15. 15.
    Day JK, Bauer AM, desBordes C, Zhuang Y, Kim BE, Newton LG, Nehra V, Forsee KM, MacDonald RS, Besch-Williford C et al (2002) Genistein alters methylation patterns in mice. J Nutr 132:2419S–2423SCrossRefGoogle Scholar
  16. 16.
    Hong TNT, Pan W, Kim MY, Kraus WL, Ikehara T, Yasui K, Aihara H, Takebe M, Muramatsu M, Ito T (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317:259–264CrossRefGoogle Scholar
  17. 17.
    Ganai AAFH (2015) Bioactivity of genistein: a review of in vitro and in vivo studies. Biomed Pharmacother 76:30–38CrossRefGoogle Scholar
  18. 18.
    Messina MJPV, Setchell KD, Barnes S (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21:113–131CrossRefGoogle Scholar
  19. 19.
    Sung MJ, Kim DH, Jung YJ, Kang KP, Lee AS, Lee S, Kim W, Davaatseren M, Hwang J-T, Kim H-J, Kim MS, Kwon DY, Park SK (2008) Genistein protects the kidney from cisplatin-induced injury. Kidney Int 74:1538–1547CrossRefGoogle Scholar
  20. 20.
    Elmarakby AA, Ibrahim AS, Faulkner J, Mozaffari MS, Liou GI, Abdelsayed R (2011) Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vasc Pharmacol 55:149–156CrossRefGoogle Scholar
  21. 21.
    Kuroo M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51CrossRefGoogle Scholar
  22. 22.
    Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N et al (2011) Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286:8655–8665CrossRefGoogle Scholar
  23. 23.
    Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N (2012) Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol 303:F1641–F1651CrossRefGoogle Scholar
  24. 24.
    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774CrossRefGoogle Scholar
  25. 25.
    Sanchez-Nino MD, Sanz AB, Ortiz A (2013) Klotho to treat kidney fibrosis. J Am Soc Nephrol 24:687–689CrossRefGoogle Scholar
  26. 26.
    Akimoto T, Yoshizawa H, Watanabe Y, Numata A, Yamazaki T, Takeshima E, Iwazu K, Komada T, Otani N, Morishita Y, Ito C, Shiizaki K, Ando Y, Muto S, Kuro-o M, Kusano E (2012) Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol 13:155CrossRefGoogle Scholar
  27. 27.
    Kitagawa M, Sugiyama H, Morinaga H, Inoue T, Takiue K, Ogawa A, Yamanari T, Kikumoto Y, Uchida HA, Kitamura S, Maeshima Y, Nakamura K, Ito H, Makino H (2013) A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS One 8:e56695CrossRefGoogle Scholar
  28. 28.
    Lin W, Zhang Q, Liu L, Yin S, Liu Z, Cao W (2017) Klotho restoration via acetylation of peroxisome proliferation–activated receptor γ reduces the progression of chronic kidney disease. Kidney Int 92:669–679CrossRefGoogle Scholar
  29. 29.
    Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81:640–650CrossRefGoogle Scholar
  30. 30.
    Liu L, Lin W, Zhang Q, Cao W, Liu Z (2016) TGF-beta induces miR-30d down-regulation and podocyte injury through Smad2/3 and HDAC3-associated transcriptional repression. J Mol Med 94:291–300CrossRefGoogle Scholar
  31. 31.
    Yang J, Yin S, Bi F, Liu L, Qin T, Wang H, Cao W (2016) TIMAP repression by TGFβ and HDAC3-associated Smad signaling regulates macrophage M2 phenotypic phagocytosis. J Mol Med 95:273–285CrossRefGoogle Scholar
  32. 32.
    Bi F, Chen F, Li Y, Wei A, Cao W (2018) Klotho preservation by Rhein promotes toll-like receptor 4 proteolysis and attenuates lipopolysaccharide-induced acute kidney injury. J Mol Med 96:915–927CrossRefGoogle Scholar
  33. 33.
    Yin S, Zhang Q, Yang J, Lin W, Li Y, Chen F, Cao W (2017) TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis. Biochim Biophys Acta Mol Cell Res 1864:1207–1216CrossRefGoogle Scholar
  34. 34.
    Bottinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610CrossRefGoogle Scholar
  35. 35.
    Rahman Mazumder MA, Hongsprabhas P (2016) Genistein as antioxidant and antibrowning agents in in vivo and in vitro: a review. Biomed Pharmacother 82:379–392CrossRefGoogle Scholar
  36. 36.
    Amiri Gheshlaghi S, Mohammad Jafari R, Algazo M, Rahimi N, Alshaib H, Dehpour AR (2017) Genistein modulation of seizure: involvement of estrogen and serotonin receptors. J Nat Med 71:537–544CrossRefGoogle Scholar
  37. 37.
    Groh IAM, Chen C, Lüske C, Cartus AT, Esselen M (2013) Plant polyphenols and oxidative metabolites of the herbal Alkenylbenzene Methyleugenol suppress histone deacetylase activity in human colon carcinoma cells. J Nutr Metab 2013:1–10CrossRefGoogle Scholar
  38. 38.
    Lin W, Li Y, chen F, Yin S, Liu Z, Cao W (2017) Klotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice. Sci Rep 7:46195. CrossRefGoogle Scholar
  39. 39.
    Zhang Q, Liu L, Lin W, Yin S, Duan A, Liu Z, Cao W (2017) Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney Int 91:144–156CrossRefGoogle Scholar
  40. 40.
    Tollefsbol KALTO (2017) The influence of an epigenetics diet on the cancer epigenome. Epigenomics 9:1153–1155CrossRefGoogle Scholar
  41. 41.
    Stancheva TCI (2008) Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci 65:1509–1522CrossRefGoogle Scholar
  42. 42.
    Setchell KDR, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129:758S–767SCrossRefGoogle Scholar
  43. 43.
    Yang-Ming Yang DS, Kandhi S, Froogh G, Zhuge J, Huang W, Hammock BD, An H (2018) Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc Natl Acad Sci U S A 115:613–618CrossRefGoogle Scholar
  44. 44.
    Kim D, Lee AS, Jung YJ, Yang KH, Lee S, Park SK, Kim W, Kang KP (2014) Tamoxifen ameliorates renal tubulointerstitial fibrosis by modulation of estrogen receptor α-mediated transforming growth factor-β1/Smad signaling pathway. Nephrol Dial Transplant 29:2043–2053CrossRefGoogle Scholar
  45. 45.
    Sinha S, Shukla S, Khan S, Tollefsbol TO, Meeran SM (2015) Epigenetic reactivation of p21(CIP1/WAF1) and KLOTHO by a combination of bioactive dietary supplements is partially ER alpha-dependent in ER alpha-negative human breast cancer cells. Mol Cell Endocrinol 406:102–114CrossRefGoogle Scholar
  46. 46.
    Chen J, Zhang X, Zhang H, Lin J, Zhang C, Wu Q, Ding X (2013) Elevated Klotho promoter methylation is associated with severity of chronic kidney disease. PLoS One 8:e79856CrossRefGoogle Scholar
  47. 47.
    Shimamura Y, Hamada K, Inoue K, Ogata K, Ishihara M, Kagawa T, Inoue M, Fujimoto S, Ikebe M, Yuasa K et al (2012) Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol 16:722–729CrossRefGoogle Scholar
  48. 48.
    Hu MC, Shi M, Zhang J, Quinones H, Kuro-o M, Moe OW (2010) Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int 78:1240–1251CrossRefGoogle Scholar
  49. 49.
    Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB (2009) The PPARg agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 20:2380–2388CrossRefGoogle Scholar
  50. 50.
    Drew DAKR, Kritchevsky S, Ix J, Shlipak M, Gutiérrez OM, Newman A, Hoofnagle A, Fried L, Semba RD, Sarnak M (2017) Association between soluble Klotho and change in kidney function: the health aging and body composition study. J Am Soc Nephrol 28:1859–1866CrossRefGoogle Scholar
  51. 51.
    Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta Gen Subj 1790:1049–1058CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Molecular MedicineNanjing University School of MedicineNanjingChina

Personalised recommendations