Journal of Molecular Medicine

, Volume 97, Issue 4, pp 437–450 | Cite as

Exploring the roles of MSCs in infections: focus on bacterial diseases

  • Pasquale Marrazzo
  • Annunziata Nancy Crupi
  • Francesco AlvianoEmail author
  • Laura Teodori
  • Laura Bonsi


Despite human healthcare advances, some microorganisms continuously react evolving new survival strategies, choosing between a commensal fitness and a pathogenic attitude. Many opportunistic microbes are becoming an increasing cause of clinically evident infections while several renowned infectious diseases sustain a considerable number of deaths. Besides the primary and extensively investigated role of immune cells, other cell types are involved in the microbe-host interaction during infection. Interestingly, mesenchymal stem cells (MSCs), the current leading players in cell therapy approaches, have been suggested to contribute to tackling pathogens and modulating the host immune response. In this context, this review critically explores MSCs’ role in E. coli, S. aureus, and polymicrobial infections. Summarizing from various studies, in vitro and in vivo results support the mechanistic involvement of MSCs and their derivatives in fighting infection and in contributing to microbial spreading. Our work outlines the double face of MSCs during infection, disease, and sepsis, highlighting potential pitfalls in MSC-based therapy due to the MSCs’ susceptibility to pathogens’ weapons. We also identify potential targets to improve infection treatments, and propose the potential applications of MSCs for vaccine research.


MSCs Pathogens Cell therapy Infection Stem cells Antibacterial Immunomodulation 



We thank Dr. Neil Slaven for checking the manuscript and linguistic revision.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Chatzivasileiou K, Kriebel K, Steinhoff G, Kreikemeyer B, Lang H (2015) Do oral bacteria alter the regenerative potential of stem cells? A concise review. J Cell Mol Med 19:2067–2074Google Scholar
  2. 2.
    Sheng G (2015) The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev Biol 15:44Google Scholar
  3. 3.
    Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274Google Scholar
  4. 4.
    Zuk PA, Zhu M, Ashjian P, de Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295Google Scholar
  5. 5.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630Google Scholar
  6. 6.
    Doorn J, Moll G, Le Blanc K et al (2012) Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng B Rev 18:101–115Google Scholar
  7. 7.
    Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T (2014) Host innate immune responses to sepsis. Virulence 5:36–44Google Scholar
  8. 8.
    Dang S, Yu Z, Zhang C, Zheng J, Li KL, Wu Y, Qian LL, Yang ZY, Li XR, Zhang Y, Wang RX (2015) Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment. Stem Cell Res Ther 6:247Google Scholar
  9. 9.
    van der Poll T, Opal SM (2008) Host-pathogen interactions in sepsis. Lancet Infect Dis 8:32–43Google Scholar
  10. 10.
    Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874Google Scholar
  11. 11.
    Boomer JS, To K, Chang KC et al (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–2605Google Scholar
  12. 12.
    Lalu MM, Sullivan KJ, Mei SH et al (2016) Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. Elife 17:5Google Scholar
  13. 13.
    Casadevall A, Pirofski LA (2000) Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun 68:6511–6518Google Scholar
  14. 14.
    Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461Google Scholar
  15. 15.
    Kahan BD (2003) Timeline: individuality: the barrier to optimal immunosuppression. Nat Rev Immunol 3:831–838Google Scholar
  16. 16.
    Le Blanc K, Tammik C, Rosendahl K et al (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896Google Scholar
  17. 17.
    Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385Google Scholar
  18. 18.
    DelaRosa O, Dalemans W, Lombardo E (2012) Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 3:1–8Google Scholar
  19. 19.
    Sangiorgi B, Panepucci RA (2016) Modulation of immunoregulatory properties of mesenchymal stromal cells by Toll-like receptors: potential applications on GVHD. Stem Cells Int 2016:9434250–9434210Google Scholar
  20. 20.
    Baron F, Storb R (2012) Mesenchymal stromal cells: a new tool against graft-versus-host disease? Biol Blood Marrow Transplant 18:822–840Google Scholar
  21. 21.
    Wei X, Yang X, Han Z, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754Google Scholar
  22. 22.
    Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490Google Scholar
  23. 23.
    Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333Google Scholar
  24. 24.
    Noël D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, Jorgensen C, Cousin B (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314:1575–1584Google Scholar
  25. 25.
    De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109Google Scholar
  26. 26.
    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398Google Scholar
  27. 27.
    Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5:e9016. Google Scholar
  28. 28.
    Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843Google Scholar
  29. 29.
    Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729Google Scholar
  30. 30.
    Ghannam S, Pène J, Moquet-Torcy G et al (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312Google Scholar
  31. 31.
    Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V (2009) Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 27:693–702Google Scholar
  32. 32.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372Google Scholar
  33. 33.
    Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen WJ, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555Google Scholar
  34. 34.
    Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–289Google Scholar
  35. 35.
    Brun J, Abruzzese T, Rolauffs B, Aicher WK, Hart ML (2016) Choice of xenogenic-free expansion media significantly influences the myogenic differentiation potential of human bone marrow–derived mesenchymal stromal cells. Cytotherapy 18:344–359Google Scholar
  36. 36.
    Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood 118:330–338Google Scholar
  37. 37.
    Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17:1164Google Scholar
  38. 38.
    Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396Google Scholar
  39. 39.
    Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33:136–143Google Scholar
  40. 40.
    Le Blanc K, Davies LC (2015) Mesenchymal stromal cells and the innate immune response. Immunol Lett 168:140–146Google Scholar
  41. 41.
    Wannemuehler TJ, Manukyan MC, Brewster BD, Rouch J, Poynter JA, Wang Y, Meldrum DR (2012) Advances in mesenchymal stem cell research in sepsis. J Surg Res 173:113–126Google Scholar
  42. 42.
    Bassi ÊJ, de Almeida DC, Moraes-Vieira PMM, Câmara NOS (2012) Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev 8:329–342Google Scholar
  43. 43.
    Harman RM, Yang S, He MK, Van De Walle GR (2017) Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 8:157Google Scholar
  44. 44.
    Xu J, Woods CR, Mora AL et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293:131–141Google Scholar
  45. 45.
    Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863Google Scholar
  46. 46.
    Mei SHJ, McCarter SD, Deng Y et al (2007) Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4:e269. Google Scholar
  47. 47.
    Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58:929–939Google Scholar
  48. 48.
    Sepúlveda JC, Tomé M, Fernández ME et al (2014) Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 32:1865–1877Google Scholar
  49. 49.
    Lee JW, Fang X, Gupta N, Serikov V, Matthay MA (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci 106:16357–16362Google Scholar
  50. 50.
    Lee JW, Krasnodembskaya A, McKenna DH et al (2013) Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 187:751–760Google Scholar
  51. 51.
    Kim E, Chang Y, Choi S et al (2011) Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res 12:108Google Scholar
  52. 52.
    Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X, Serikov V, Matthay MA (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539Google Scholar
  53. 53.
    Zhu Y-G, Feng X-M, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA, Lee JW (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–125Google Scholar
  54. 54.
    Monsel A, Zhu YG, Gennai S et al (2015) Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 192:1–63Google Scholar
  55. 55.
    Devaney J, Horie S, Masterson C, Elliman S, Barry F, O’Brien T, Curley GF, O’Toole D, Laffey JG (2015) Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 70:625–635Google Scholar
  56. 56.
    Hall SRR, Tsoyi K, Ith B, Padera RF Jr, Lederer JA, Wang Z, Liu X, Perrella MA (2013) Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells 31:397–407Google Scholar
  57. 57.
    Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, Mauel K, Jäger M, Flohé SB, Lang S (2014) Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS One 9:e106903. Google Scholar
  58. 58.
    Sung DK, Chang YS, Sung SI, Yoo HS, Ahn SY, Park WS (2016) Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol 18:424–436Google Scholar
  59. 59.
    Zhu Y, Xu L, Collins JJP et al (2017) Human umbilical cord mesenchymal stromal cells improve survival and bacterial clearance in neonatal sepsis in rats. Stem Cells Dev.
  60. 60.
    Yi S, Han G, Shang Y, Liu C, Cui D, Yu S, Liao B, Ao X, Li G, Li L (2016) Microbubble-mediated ultrasound promotes accumulation of bone marrow mesenchymal stem cell to the prostate for treating chronic bacterial prostatitis in rats. Sci Rep 6:19745Google Scholar
  61. 61.
    Ou H, Zhao S, Peng Y, Xiao X, Wang Q, Liu H, Xiao X, Yang M (2016) Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis. Mol Med Rep 14:3862–3870Google Scholar
  62. 62.
    Xiang B, Chen L, Wang X, Zhao Y, Wang Y, Xiang C (2017) Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. Int J Mol Sci 18. doi:
  63. 63.
    Kukolj T, Trivanović D, Djordjević IO, Mojsilović S, Krstić J, Obradović H, Janković S, Santibanez JF, Jauković A, Bugarski D (2018) Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling. J Cell Physiol 233:447–462Google Scholar
  64. 64.
    Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey É (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49Google Scholar
  65. 65.
    Dürr UHN, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta Biomembr 1758:1408–1425Google Scholar
  66. 66.
    Krasnodembskaya A, Song Y, Fang X et al (2012) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238Google Scholar
  67. 67.
    Brown KL, Poon GFT, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, Karlsson A, Bylund J, Hancock REW, Johnson P (2011) Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol 186:5497–5505Google Scholar
  68. 68.
    Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921Google Scholar
  69. 69.
    Wu H, Santoni-Rugiu E, Ralfkiaer E, Porse BT, Moser C, Høiby N, Borregaard N, Cowland JB (2010) Lipocalin 2 is protective against E. coli pneumonia. Respir Res 11:96Google Scholar
  70. 70.
    Berger T, Togawa A, Duncan GS, Elia AJ, You-ten A, Wakeham A, Fong HEH, Cheung CC, Mak TW (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103:1834–1839Google Scholar
  71. 71.
    Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G (2018) Iron and innate antimicrobial immunity—depriving the pathogen, defending the host. J Trace Elem Med Biol 48:118–133Google Scholar
  72. 72.
    Stefanova D, Raychev A, Deville J, Humphries R, Campeau S, Ruchala P, Nemeth E, Ganz T, Bulut Y (2018) Hepcidin protects against lethal Escherichia coli sepsis in mice inoculated with isolates from septic patients. Infect Immun 86:e00253–e00218Google Scholar
  73. 73.
    Liu D, Gan Z-S, Ma W, Xiong HT, Li YQ, Wang YZ, du HH (2017) Synthetic porcine hepcidin exhibits different roles in Escherichia coli and Salmonella infections. Antimicrob Agents Chemother 61.
  74. 74.
    Michels K, Nemeth E, Ganz T, Mehrad B (2015) Hepcidin and host defense against infectious diseases. PLoS Pathog 11:e1004998. Google Scholar
  75. 75.
    Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238Google Scholar
  76. 76.
    Johnson V, Webb T, Dow S (2013) Activated mesenchymal stem cells amplify antibiotic activity against chronic Staphylococcus aureus infection (P5056). J Immunol 190:180.11Google Scholar
  77. 77.
    Johnson V, Webb T, Norman A, Coy J, Kurihara J, Regan D, Dow S (2017) Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Sci Rep 7:9575Google Scholar
  78. 78.
    Josse J, Velard F, Mechiche Alami S, Brun V, Guillaume C, Kerdjoudj H, Lamkhioued B, Gangloff SC (2014) Increased internalization of Staphylococcus aureus and cytokine expression in human Wharton’s jelly mesenchymal stem cells. Biomed Mater Eng 24:27–35Google Scholar
  79. 79.
    Guerra AD, Rose WE, Hematti P, Kao WJ (2017) Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus in mesenchymal stromal/stem cells. Stem Cell Res Ther 8:171Google Scholar
  80. 80.
    Seebach E, Holschbach J, Buchta N, Bitsch RG, Kleinschmidt K, Richter W (2015) Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis. Acta Biomater 21:165–177Google Scholar
  81. 81.
    Ward CL, Sanchez CJ, Pollot BE et al (2015) Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol 15:75Google Scholar
  82. 82.
    Mot YY, Othman I, Sharifah SH (2017) Synergistic antibacterial effect of co-administering adipose-derived mesenchymal stromal cells and Ophiophagus hannah l-amino acid oxidase in a mouse model of methicillin-resistant Staphylococcus aureus-infected wounds. Stem Cell Res Ther 8:5Google Scholar
  83. 83.
    Hou M, Zhang N, Yang J, Meng X, Yang R, Li J, Sun T (2013) Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell Physiol Biochem 32:614–623Google Scholar
  84. 84.
    Liu Z, Yuan X, Liu M et al (2018) Antimicrobial peptide combined with BMP2 modified mesenchymal stem cells promotes calvarial repair in mouse inflammatory calvarial osteolytic model. Mol Ther 26:199–207Google Scholar
  85. 85.
    Lee P-H, Chen M-Y, Lai Y-L et al (2017) Human beta-defensin-2 and -3 mitigate the negative effects of bacterial contamination on bone healing in rat calvarial defect. Tissue Eng A.
  86. 86.
    Mei SHJ, Haitsma JJ, Dos Santos CC, Deng Y, Lai PFH, Slutsky AS, Liles WC, Stewart DJ (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057Google Scholar
  87. 87.
    Alcayaga-Miranda F, Cuenca J, Martin A, Contreras L, Figueroa FE, Khoury M (2015) Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Res Ther 6:199Google Scholar
  88. 88.
    Asano K, Yoshimura S, Nakane A (2015) Adipose tissue-derived mesenchymal stem cells attenuate staphylococcal enterotoxin A-induced toxic shock. Infect Immun 83:3490–3496Google Scholar
  89. 89.
    Cóndor JM, Rodrigues CE, de Sousa Moreira R, Canale D, Volpini RA, Shimizu MHM, Camara NOS, Noronha IL, Andrade L (2016) Treatment with human Wharton’s jelly-derived mesenchymal stem cells attenuates sepsis-induced kidney injury, liver injury, and endothelial dysfunction. Stem Cells Transl Med 5:1048–1057Google Scholar
  90. 90.
    Chao Y-H, Wu H-P, Wu K-H, Tsai YG, Peng CT, Lin KC, Chao WR, Lee MS, Fu YC (2014) An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9:e110338. Google Scholar
  91. 91.
    Pedrazza L, Lunardelli A, Luft C, Cruz CU, de Mesquita FC, Bitencourt S, Nunes FB, de Oliveira JR (2014) Mesenchymal stem cells decrease splenocytes apoptosis in a sepsis experimental model. Inflamm Res 63:719–728Google Scholar
  92. 92.
    Pedrazza L, Pereira TCB, Abujamra AL, Nunes FB, Bogo MR, de Oliveira JR (2017) Mesenchymal stem cells cannot affect mRNA expression of toll-like receptors in different tissues during sepsis. Inflamm Res 66:547–551Google Scholar
  93. 93.
    Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35:851–858Google Scholar
  94. 94.
    van der Pol L, Stork M, van der Ley P (2015) Outer membrane vesicles as platform vaccine technology. Biotechnol J 10:1689–1706Google Scholar
  95. 95.
    Prattichizzo F, Micolucci L, Cricca M, de Carolis S, Mensà E, Ceriello A, Procopio AD, Bonafè M, Olivieri F (2017) Exosome-based immunomodulation during aging: a nano-perspective on inflamm-aging. Mech Ageing Dev 168:44–53Google Scholar
  96. 96.
    Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22:845–854Google Scholar
  97. 97.
    Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, el Oakley RM, Pasterkamp G, de Kleijn DPV, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222Google Scholar
  98. 98.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor ENE, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312Google Scholar
  99. 99.
    Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34Google Scholar
  100. 100.
    Reis LA, Borges FT, Simões MJ, Borges AA, Sinigaglia-Coimbra R, Schor N (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 7:e44092. Google Scholar
  101. 101.
    Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483Google Scholar
  102. 102.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611Google Scholar
  103. 103.
    Akyurekli C, Le Y, Richardson RB et al (2015) A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev Reports 11:150–160Google Scholar
  104. 104.
    Crivelli B, Chlapanidas T, Perteghella S, Lucarelli E, Pascucci L, Brini AT, Ferrero I, Marazzi M, Pessina A, Torre ML, Italian Mesenchymal Stem Cell Group (GISM) (2017) Mesenchymal stem/stromal cell extracellular vesicles: from active principle to next generation drug delivery system. J Control Release 262:104–117Google Scholar
  105. 105.
    Mattar P, Bieback K (2015) Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells. Front Immunol 6:560Google Scholar
  106. 106.
    Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7:e2062. Google Scholar
  107. 107.
    Galderisi U, Giordano A (2014) The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med Res Rev 34:1100–1126Google Scholar
  108. 108.
    Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12Google Scholar
  109. 109.
    Wang Q, Yang Q, Wang Z, Tong H, Ma L, Zhang Y, Shan F, Meng Y, Yuan Z (2016) Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Hum Vaccin Immunother 12:85–96Google Scholar
  110. 110.
    Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T (2016) Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int 2016:1–17Google Scholar
  111. 111.
    Mahmood A, Lu D, Lu M, Chopp M (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53:697–703Google Scholar
  112. 112.
    Xiong C, Mao Y, Wu T, Kang N, Zhao M, di R, Li X, Ji X, Liu Y (2018) Optimized expression and characterization of a novel fully human bispecific single-chain diabody targeting vascular endothelial growth factor165 and programmed death-1 in Pichia pastoris and evaluation of antitumor activity in vivo. Int J Mol Sci 19:2900Google Scholar
  113. 113.
    Richter-Dahlfors A, Rhen M, Udekwu K (2012) Tissue microbiology provides a coherent picture of infection. Curr Opin Microbiol 15:15–22Google Scholar
  114. 114.
    Moon JS, Cheong NR, Yang SY, Kim IS, Chung HJ, Jeong YW, Park JC, Kim MS, Kim SH, Ko HM (2013) Lipopolysaccharide-induced indoleamine 2,3-dioxygenase expression in the periodontal ligament. J Periodontal Res 48:733–739Google Scholar
  115. 115.
    Yang Y, Choi H, Seon M, et al (2016) LL-37 stimulates the functions of adipose- derived stromal / stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res Ther 1–12. doi:
  116. 116.
    Oliveira-Bravo M, Sangiorgi BB, dos Santos Schiavinato JL et al (2016) LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Res Ther 7:189Google Scholar
  117. 117.
    Lee EY, Lee MW, Wong GCL (2018) Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2:12Google Scholar
  118. 118.
    Lombardo E (2015) Mesenchymal stem cells as a therapeutic tool to treat sepsis. World J Stem Cells 7:368–379Google Scholar
  119. 119.
    Li Z, Liao W, Cui X, Zhao Q, Liu M, Chen YH, Liu TS, Liu NL, Wang F, Yi Y, Shao NS (2011) Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 8:74–83Google Scholar
  120. 120.
    Weil BR, Herrmann JL, Abarbanell AM, Manukyan MC, Poynter JA, Meldrum DR (2011) Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia. Shock 36:235–241Google Scholar
  121. 121.
    Hauger O, Frost EE, van Heeswijk R, Deminière C, Xue R, Delmas Y, Combe C, Moonen CTW, Grenier N, Bulte JWM (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238:200–210Google Scholar
  122. 122.
    Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBolognaItaly
  2. 2.Diagnostics and Metrology, FSN-TECFIS-DIMEnea FrascatiRomeItaly

Personalised recommendations