Journal of Molecular Medicine

, Volume 97, Issue 3, pp 409–422 | Cite as

MiR-449a-5p mediates mitochondrial dysfunction and phenotypic transition by targeting Myc in pulmonary arterial smooth muscle cells

  • Chen Zhang
  • Cui Ma
  • Lixin Zhang
  • Linlin Zhang
  • Fengying Zhang
  • Mingfei Ma
  • Xiaodong Zheng
  • Min Mao
  • Tingting Shen
  • Daling ZhuEmail author
Original Article


MicroRNAs have been considered to participate in pulmonary arterial hypertension (PAH) and regulate numerous disease pathways in pulmonary vasculature. However, the molecular role in the pathologies has not yet been fully uncovered, particularly in the view of energy metabolism and vascular smooth muscle cell phenotypic regulation. Here, several altered miRNAs are founded in genome-wide miRNA sequencing analysis, in which miR-449a-5p was identified as a probable candidate in hypoxic PAH and verified such a decreasing trend. Moreover, we identify that miR-449a-5p plays critical role in both mitochondria metabolic dysfunction and phenotype transformation of pulmonary arterial smooth muscle cells. Subsequently, we initiate that the transcription factor Myc, which is negatively regulated by miR-449a-5p, results in the aberrant effects contributing to pulmonary arterial smooth muscle cell proliferation. Taken together, we demonstrated that the miR-449a-5p/Myc axis is indispensable for the development and progression of PAH. These results may serve as a significant implication for understanding and treatment of PAH.

Key messages

• The downregulation of miR-449a-5p occurs in both PAH-PAs and hypoxic PASMCs.

• MiR-449a-5p is involved in hypoxia-induced mitochondria dysfunction of PASMCs.

• MiR-449a-5p inhibits hypoxic phenotypic transition and proliferation of PASMCs.

• The aberrant effects of MiR-449a-5p depend on downstream transcription factor Myc.

• Myc contributes to mitochondria dysfunction and phenotype transformation in PAH.


Pulmonary arterial hypertension MiR-449a-5p Myc Metabolism Phenotypic transition 


Funding information

This work was supported by grants: National Natural Science Foundation of China (contract grant number: 31820103007, 31771276 and 31471095 to D.Z.), National Natural Science Foundation of China (contract grant number: 31500936 to X. Zheng), National Natural Science Foundation of China (contract grant number: 81873412, 31400353 to C. M.), Wu Liande Youth Science Foundation (contract grant number: WLD-QN1410 to C. M.), Excellent Young Talents Fund Program of Higher Education Institutions of Heilongjiang Province (contract grant number: UNPYSCT-2017047 to C. M.), Returned Overseas Students Funding of Heilongjiang Province (contract grant number: 2017QD0040 to C. M.), and Postdoctoral Research Funding of Heilongjiang Province (contract grant number: LBH-Q17098 to C. M.)

Compliance with ethical standards

All animal care and experimental procedures were performed in accordance with relevant guidelines and regulations and approved by the Institutional Animal Care and Use Committee (IACUC) of Harbin Medical University.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

109_2019_1751_MOESM1_ESM.xls (48 kb)
ESM 1 (XLS 48 kb)
109_2019_1751_MOESM2_ESM.pdf (306 kb)
ESM 2 (PDF 305 kb)


  1. 1.
    D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349CrossRefPubMedGoogle Scholar
  2. 2.
    Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P, Macias J, Yuan JX, Jamieson SW, Thistlethwaite PA (2009) Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 15(11):1289–1297CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132(1):9–14CrossRefPubMedGoogle Scholar
  6. 6.
    Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21(20):2558–2570CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773CrossRefPubMedGoogle Scholar
  8. 8.
    Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8(1):23–36CrossRefPubMedGoogle Scholar
  9. 9.
    Paulin R, Michelakis ED (2014) The metabolic theory of pulmonary arterial hypertension. Circ Res 115(1):148–164CrossRefPubMedGoogle Scholar
  10. 10.
    Sutendra G, Michelakis ED (2014) The metabolic basis of pulmonary arterial hypertension. Cell Metab 19(4):558–573CrossRefPubMedGoogle Scholar
  11. 11.
    Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990CrossRefPubMedGoogle Scholar
  12. 12.
    Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004–3016CrossRefPubMedGoogle Scholar
  13. 13.
    Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264CrossRefPubMedGoogle Scholar
  14. 14.
    Fukazawa T, Maeda Y, Matsuoka J, Yamatsuji T, Shigemitsu K, Morita I, Faiola F, Durbin ML, Soucek L, Naomoto Y (2010) Inhibition of Myc effectively targets KRAS mutation-positive lung cancer expressing high levels of Myc. Anticancer Res 30(10):4193–4200PubMedGoogle Scholar
  15. 15.
    Prochownik EV (2008) c-Myc: linking transformation and genomic instability. Curr Mol Med 8(6):446–458CrossRefPubMedGoogle Scholar
  16. 16.
    Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA, Kim JW, Yustein JT, Lee LA, Dang CV (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25(14):6225–6234CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A, Wang Y, Jin ES, Jeffrey FM, Portman M, MacLellan WR (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest 120(5):1494–1505CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11(5):407–420CrossRefPubMedGoogle Scholar
  19. 19.
    Spiegelman BM (2007) Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp 287:60–63 discussion 63-69PubMedGoogle Scholar
  20. 20.
    Provencher S, Archer SL, Ramirez FD, Hibbert B, Paulin R, Boucherat O, Lacasse Y, Bonnet S (2018) Standards and methodological rigor in pulmonary arterial hypertension preclinical and translational research. Circ Res 122(7):1021–1032CrossRefPubMedGoogle Scholar
  21. 21.
    Grayson AR, Walsh EM, Cameron MJ, Godec J, Ashworth T, Ambrose JM, Aserlind AB, Wang H, Evan GI, Kluk MJ, Bradner JE, Aster JC, French CA (2014) MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma. Oncogene 33(13):1736–1742CrossRefPubMedGoogle Scholar
  22. 22.
    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ 3rd (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A 108(40):16669–16674CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Basson M (2007) MicroRNAs loom large in the heart. Nat Med 13(5):541CrossRefPubMedGoogle Scholar
  25. 25.
    Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267CrossRefPubMedGoogle Scholar
  26. 26.
    Van Rooij E, Marshall WS, Olson EN (2008) Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 103(9):919–928CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317CrossRefPubMedGoogle Scholar
  28. 28.
    Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Phys 299(6):L861–L871Google Scholar
  29. 29.
    Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Côté J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, Tian H, Jiang C, Zhu D (2012) The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C. Hypertension 59(5):1006–1013CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang L, Ma C, Zhang C, Ma M, Zhang F, Zhang L, Chen Y, Cao F, Li S, Zhu D (2016) Reactive oxygen species effect PASMCs apoptosis via regulation of dynamin-related protein 1 in hypoxic pulmonary hypertension. Histochem Cell Biol 146(1):71–84CrossRefPubMedGoogle Scholar
  32. 32.
    Boucherat O, Peterlini T, Bourgeois A, Nadeau V, Breuils-Bonnet S, Boilet-Molez S, Potus F, Meloche J, Chabot S, Lambert C, Tremblay E, Chae YC, Altieri DC, Sutendra G, Michelakis ED, Paulin R, Provencher S, Bonnet S (2018) Mitochondrial HSP90 accumulation promotes vascular remodeling in pulmonary arterial hypertension. Am J Respir Crit Care Med 198(1):90–103CrossRefPubMedGoogle Scholar
  33. 33.
    Meloche S, Pelletier S, Servant MJ (2000) Functional cross-talk between the cyclic AMP and Jak/STAT signaling pathways in vascular smooth muscle cells. Mol Cell Biochem 212(1–2):99–109CrossRefPubMedGoogle Scholar
  34. 34.
    Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Venturelli D, Lange B, Narni F, Selleri L, Mariano MT, Torelli U, Gewirtz AM, Calabretta B (1988) Prognostic significance of “short-term” effects of chemotherapy on MYC and histone H3 mRNA levels in acute leukemia patients. Proc Natl Acad Sci U S A 85(10):3590–3594CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11(1):37–51CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshida T, Azuma H, Aihara K, Fujimura M, Akaike M, Mitsui T, Matsumoto T (2005) Vascular smooth muscle cell proliferation is dependent upon upregulation of mitochondrial transcription factor A (mtTFA) expression in injured rat carotid artery. Atherosclerosis 178(1):39–47CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chen Zhang
    • 1
    • 2
  • Cui Ma
    • 2
    • 3
  • Lixin Zhang
    • 2
    • 3
  • Linlin Zhang
    • 4
  • Fengying Zhang
    • 4
  • Mingfei Ma
    • 4
  • Xiaodong Zheng
    • 5
  • Min Mao
    • 4
  • Tingting Shen
    • 6
  • Daling Zhu
    • 2
    • 4
    • 7
    • 8
    Email author
  1. 1.College of PharmacyHarbin University of CommerceHarbinPeople’s Republic of China
  2. 2.Central LaboratoryHarbin Medical University (Daqing)DaqingPeople’s Republic of China
  3. 3.College of Medical Laboratory Science and TechnologyHarbin Medical University (Daqing)DaqingPeople’s Republic of China
  4. 4.College of PharmacyHarbin Medical UniversityHarbinPeople’s Republic of China
  5. 5.Department of PathophysiologyHarbin Medical University (Daqing)DaqingPeople’s Republic of China
  6. 6.Department of PharmacologyDalian Medical UniversityDalianChina
  7. 7.State Province Key Laboratories of Biomedicine-Pharmaceutics of ChinaDaqingPeople’s Republic of China
  8. 8.Key Laboratory of Cardiovascular Medicine Research, Ministry of EducationHarbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations