Journal of Molecular Medicine

, Volume 97, Issue 4, pp 491–508 | Cite as

FOXM1 plays a role in autophagy by transcriptionally regulating Beclin-1 and LC3 genes in human triple-negative breast cancer cells

  • Zuhal Hamurcu
  • Nesrin Delibaşı
  • Ufuk Nalbantoglu
  • Elif Funda Sener
  • Nursultan Nurdinov
  • Bayram Tascı
  • Serpil Taheri
  • Yusuf Özkul
  • Hamiyet Donmez-Altuntas
  • Halit Canatan
  • Bulent OzpolatEmail author
Original Article


Triple-negative breast cancer (TNBC) is associated with poor prognosis owing to its aggressive and heterogeneous nature, and the lack of therapeutic targets. Although Forkhead Box M1 (FOXM1) is one of the most important oncogenes contributing to tumorigenesis, progression, and drug resistance in TNBC, the underlying molecular mechanisms are not well understood. Emerging evidence indicates that autophagy plays a critical role in cell survival and protective mechanism in TNBC. However, signaling pathways that are involved in the regulation of autophagy remain to be elucidated. In the present study, we examined the role of FOXM1 in regulating autophagy in TNBC cells and found that FOXM1 is upregulated during induction of autophagy. We found that inhibition of FOXM1 suppressed starvation and rapamycin-induced autophagy and expression of the major autophagy regulators, LC3 and Beclin-1. Further studies demonstrated that FOXM1 directly binds to the promotors of LC3 and Beclin-1 genes and transcriptionally regulates their expression by chromatin immunoprecipitation (ChIP) and luciferase gene reporter assays. In conclusion, our study provides the first evidence about the role of FOXM1 in regulating expression of LC3 and Beclin-1 and autophagy in TNBC cells. Our findings provide novel insight into the role of FOXM1 regulation of the autophagic survival pathway and potential molecular target for treating TNBC.

Key messages

• FOXM1 promotes tumorigenesis and progression of TNBC. However, the underlying molecular mechanism by which FOXM1 promotes TNBC tumorigenesis is unclear. The goal of our study was to determine the role of FOXM1 in the regulation of autophagy that plays a role in TNBC progression. Our findings show that FOXM1 binds to promoters of the genes encoding the major autophagy proteins, Beclin and LC3, and provide new insights into the regulation of autophagy, which is being targeted in many clinical trials.


Autophagy Beclin-1 FOXM1 LC3 Triple-negative breast cancer 



Triple-negative breast cancer


Forkhead Box M1


Microtubule-associated light chain 3


Chromatin immunoprecipitation


Estrogen receptors


Hormone receptors


Human epidermal growth factor receptor 2


Progesterone receptor


Eukaryotic elongation factor 2 kinase


Reverse transcriptase and polymerase chain reaction


Acidic vesicular organelles


Autophagy-related genes


Small interfering RNAs


Binding sites


Phosphate-buffered saline


Tris-buffered saline–Tween 20


Complementary DNA



This study was funded by The Scientific and Technological Research Council –TÜBİTAK- research grant (grant number 214S204) and Research Fund of the Erciyes University (Project number: TDA-2016-6415).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

109_2019_1750_MOESM1_ESM.pptx (663 kb)
ESM 1 (PPTX 663 kb)
109_2019_1750_MOESM2_ESM.pptx (61 kb)
ESM 2 (PPTX 60 kb)


  1. 1.
    PDQ Cancer Information Summaries. Bethesda (MD): National Cancer Institute (US); 2002–2018. Breast Cancer Treatment (PDQ®): Patient Version, PDQ Adult Treatment Editorial Board 2018Google Scholar
  2. 2.
    Narrandes S, Huang S, Murphy L, Xu W (2018) The exploration of contrasting pathways in triple negative breast cancer (TNBC). BMC Cancer 18:22CrossRefGoogle Scholar
  3. 3.
    Cazzaniga ME, Airoldi M, Arcangeli V, Artale S, Atzori F, Ballerio A, on behalf of; EVA Study Group (2017) Efficacy and safety of Everolimus and Exemestane in hormone-receptor positive (HR+) human-epidermal-growth-factor negative (HER2-) advanced breast cancer patients: new insights beyond clinical trials. The EVA study. Breast 35:115–121CrossRefGoogle Scholar
  4. 4.
    Guo W, Lin L, He X, He F, Wang C, Chen N, Wang Y (2017) Biomarkers of DNA repair and related pathways: significance of treatment in triple-negative breast cancer. Crit Rev Oncog 22:427–437CrossRefGoogle Scholar
  5. 5.
    Engebraaten O, Vollan HKM, Børresen-Dale AL (2013) Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol 183:1064–1074CrossRefGoogle Scholar
  6. 6.
    Abba MC, Lacunza E, Butti M, Aldaz CM (2010) Breast cancer biomarker discovery in the functional genomic age: a systematic review of 42 gene expression signatures. Biomark Insights 27:103–118Google Scholar
  7. 7.
    The Cancer Genome Atlas Network (2013) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70Google Scholar
  8. 8.
    Lu XF, Zeng, Liang WQ, Chen CF, Sun SM, Lin HY (2018) FoxM1 is a promising candidate target in the treatment of breast cancer. Oncotarget 9:842–852Google Scholar
  9. 9.
    Song X, Fiati Kenston SS, Zhao J, Yang D, Gu Y (2017) Roles of FoxM1 in cell regulation and breast cancer targeting therapy. Med Oncol 34:41CrossRefGoogle Scholar
  10. 10.
    Yang X, Shi Y, Yan J, Fan H (2018) Downregulation of FoxM1 inhibits cell growth and migration and invasion in bladder cancer cells. Am J Transl Res 10:629–638Google Scholar
  11. 11.
    Yang H, Wen L, Wen M, Liu T, Zhao L, Wu B, Yun Y, Liu W, Wang H, Wang Y, Wen N (2018) FoxM1 promotes epithelial-mesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-met/AKT-dependent positive feedback loop. Anti-Cancer Drugs 29:216–226CrossRefGoogle Scholar
  12. 12.
    Fei BY, He X, Ma J, Zhang M, Chai R (2017) FoxM1 is associated with metastasis in colorectal cancer through induction of the epithelial-mesenchymal transition. Oncol Lett 14:6553–6561Google Scholar
  13. 13.
    Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S, Ali R, Sarkar FH (2016) Retraction note to: FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat 158:607CrossRefGoogle Scholar
  14. 14.
    Hamurcu Z, Ashour A, Kahraman N, Ozpolat B (2016) FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget 7:16619–16635CrossRefGoogle Scholar
  15. 15.
    Ozpolat B, Benbrook DM (2015) Targeting autophagy in cancer management - strategies and developments. Cancer Manag Res 7:291–299CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Rucker EB 3rd, Zhou BP (2016) Autophagy regulation in the development and treatment of breast cancer. Acta Biochim Biophys Sin Shanghai 48:60–74Google Scholar
  17. 17.
    Mizushima N (2017) The exponential growth of autophagy-related research: from the humble yeast to the Nobel prize. FEBS Lett 591:681–689CrossRefGoogle Scholar
  18. 18.
    Tang DY, Ellis RA, Lovat PE (2016) Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol 6:236 eCollectionCrossRefGoogle Scholar
  19. 19.
    Hamurcu Z, Delibaşı N, Geçene S, Şener EF, Dönmez-Altuntaş H, Özkul Y, Canatan H, Ozpolat B (2018) Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of cyclin-D1 and uPAR/integrin β1/ Src signaling in triple negative breast cancer cells. J Cancer Res Clin Oncol 144:415–430CrossRefGoogle Scholar
  20. 20.
    Wang X, Xie J, Christopher G (2017) Proud. Eukaryotic elongation factor 2 kinase (eEF2K) in cancer. Cancers (Basel) 9:162CrossRefGoogle Scholar
  21. 21.
    Hamurcu Z, Kahraman N, Ashour A, Ozpolat B (2017) FOXM1 transcriptionally regulates expression of integrin β1 in triple-negative breast cancer. Breast Cancer Res Treat 163:485–493CrossRefGoogle Scholar
  22. 22.
    Deng Q, Wang Z, Wang L, Zhang L, Xiang X, Wang Z, Chong T (2013) Lower mRNA and protein expression levels of LC3 and Beclin1, markers of autophagy, were correlated with progression of renal clear cell carcinoma. Jpn J Clin Oncol 43:1261–1268CrossRefGoogle Scholar
  23. 23.
    Kusuzaki K, Matsubara T, Satonaka H, Matsumine A, Nakamura T, Sudo A, Murata H, Hosogi S, Baldini N (2014) Intraoperative photodynamic surgery (iPDS) with Acridine Orange for musculoskeletal sarcomas. Cureus 6:e204Google Scholar
  24. 24.
    Tekedereli I, Alpay SN, Akar U, Yuca E, Ayugo-Rodriguez C, Han HD, Sood AK, Lopez-Berestein G, Ozpolat B (2013) Therapeutic silencing of Bcl-2 by systemically administered siRNA Nanotherapeutics inhibits tumor growth by autophagy and apoptosis and enhances the efficacy of chemotherapy in orthotopic xenograft models of ER (−) and ER (+) breast Cancer. Mol Ther Nucleic Acids 2:e121CrossRefGoogle Scholar
  25. 25.
    Dreos R, Ambrosini G, Périer RC, Bucher P (2014) The eukaryotic promoter database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res 43(Database issue):D92–D96Google Scholar
  26. 26.
    Zhu H, Yang X, Liu J, Zhou L, Zhang C, Xu L, Qin Q, Zhan L, Lu J, Cheng H, Sun X (2015) Eukaryotic elongation factor 2 kinase confers tolerance to stress conditions in cancer cells. Cell Stress Chaperones 20:217–220CrossRefGoogle Scholar
  27. 27.
    Parmer TG, Ward MD, Yurkow EJ, Vyas VH, Kearney TJ, Hait WN (1999) Activity and regulation by growth factors of calmodulin-dependent protein kinase III (elongation factor 2-kinase) in human breast cancer. Br J Cancer 79:59–64CrossRefGoogle Scholar
  28. 28.
    Paquette M, El-Houjeiri L, Pause A (2018) mTOR pathways in cancer and autophagy. Cancers (Basel) 10(1):E18CrossRefGoogle Scholar
  29. 29.
    Civiletto G, Dogan SA, Cerutti R, Fagiolari G, Moggio M, Lamperti C, Benincá C, Viscomi C, Zeviani M (2018) Rapamycin rescues mitochondrial myopathy via coordinated activation of autophagy and lysosomal biogenesis. EMBO Mol Med 10(11):e8799CrossRefGoogle Scholar
  30. 30.
    Lee JJ, Lee HJ, Son BH, Kim SB, Ahn JH, Ahn SD, Cho EY, Gong G (2016) Expression of FOXM1 and related proteins in breast cancer molecular subtypes. Int J Exp Pathol 97:170–177CrossRefGoogle Scholar
  31. 31.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, Ait-Si-Ali S (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222CrossRefGoogle Scholar
  32. 32.
    Ye X, Zhang Y, He B, Meng Y, Li Y, Gao Y (2015) Quantitative proteomic analysis identifies new effectors of FOXM1 involved in breast cancer cell migration. Int J Clin Exp Pathol 8:15836–15844Google Scholar
  33. 33.
    Barsotti AM, Prives C (2009) Pro-proliferative FoxM1 is a target of p53- mediated repression. Oncogene 28:4295–4305CrossRefGoogle Scholar
  34. 34.
    Leung TW, Lin SS, Tsang AC, Tong CS, Ching JC, Leung WY et al (2001) Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett 507:59–66CrossRefGoogle Scholar
  35. 35.
    Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T, Costa RH (2005) Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25:10875–10894CrossRefGoogle Scholar
  36. 36.
    Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M (2013) Cancer genetics and genomics of human FOX family genes. Cancer Lett 328:198–206CrossRefGoogle Scholar
  37. 37.
    Wierstra I (2013) The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 118:97–398CrossRefGoogle Scholar
  38. 38.
    Zhao H, Yang M, Zhao J, Wang J, Zhang Y, Zhang Q (2013) High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Med Oncol 30:475CrossRefGoogle Scholar
  39. 39.
    Choi J, Jung W, Koo JS (2013) Expression of autophagy-related markers beclin-1, light chain 3A, light chain 3B and p62 according to the molecular subtype of breast cancer. Histopathology 62:275–286CrossRefGoogle Scholar
  40. 40.
    Zhong S, Zhou A, Qi F, Li Z, Yu Z, Lu Y, Liu X (2017) Downregulating forkhead box M1 inhibits proliferation by inhibiting autophagy in the sw480 cell line. Biomed Rep 7:47–50CrossRefGoogle Scholar
  41. 41.
    Sun D, Zhu L, Zhao Y, Jiang Y, Chen L, Yu Y, Ouyang L (2018) Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer. Cell Prolif 51:e12402CrossRefGoogle Scholar
  42. 42.
    Tekedereli I, Alpay SN, Tavares CD, Cobanoglu ZE, Kaoud TS, Sahin I, Sood AK, Lopez-Berestein G, Dalby KN, Ozpolat B (2012) Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer. PLoS One 7:e41171CrossRefGoogle Scholar
  43. 43.
    Lefort S, Joffre C, Kieffer Y, Givel AM, Bourachot B, Zago G, Bieche I, Dubois T, Meseure D, Vincent-Salomon A, Camonis J, Mechta-Grigoriou F (2014) Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy 10:2122–2142CrossRefGoogle Scholar
  44. 44.
    Nandi D, Cheema PS, Jaiswal N, Nag A (2017) FoxM1: repurposing an oncogene as a biomarker. Semin Cancer Biol.
  45. 45.
    Gartel A (2015) Targeting FOXM1 auto-regulation in cancer. Cancer Biol Ther 16:185–186CrossRefGoogle Scholar
  46. 46.
    Gartel AL (2017) FOXM1 in cancer: interactions and vulnerabilities. Cancer Res 77:3135–3139CrossRefGoogle Scholar
  47. 47.
    Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364CrossRefGoogle Scholar
  48. 48.
    Mrakovcic M, Fröhlich LF (2018) p53-mediated molecular control of autophagy in tumor cells. Biomolecules 8:E14CrossRefGoogle Scholar
  49. 49.
    Lee YK, Lee JA (2016) Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49:424–430CrossRefGoogle Scholar
  50. 50.
    Saba R, Alsayed A, Zacny JP, Dudek AZ (2016) The role of Forkhead box protein M1 in breast cancer progression and resistance to therapy. Int J Breast Cancer 2016:1–8CrossRefGoogle Scholar
  51. 51.
    Miyashita A, Fukushima S, Nakahara S, Yamashita J, Tokuzumi A, Aoi J, Ichihara A, Kanemaru H, Jinnin M, Ihn H (2015) Investigation of FOXM1 as a potential new target for melanoma. PLoS One 10:e0144241CrossRefGoogle Scholar
  52. 52.
    Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B (2018) Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci 75:1803–1826CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zuhal Hamurcu
    • 1
    • 2
    • 3
  • Nesrin Delibaşı
    • 1
    • 2
  • Ufuk Nalbantoglu
    • 2
    • 4
  • Elif Funda Sener
    • 1
    • 2
  • Nursultan Nurdinov
    • 1
    • 2
  • Bayram Tascı
    • 2
    • 5
  • Serpil Taheri
    • 1
    • 2
  • Yusuf Özkul
    • 2
    • 6
  • Hamiyet Donmez-Altuntas
    • 1
  • Halit Canatan
    • 1
  • Bulent Ozpolat
    • 3
    • 7
    Email author
  1. 1.Faculty of Medicine, Department of Medical BiologyErciyes UniversityKayseriTurkey
  2. 2.Betül-Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
  3. 3.Center for RNA Interference and Non-Coding RNAThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Faculty of Engineering, Department of Computer EngineeringBioinformatics, Genome and Stem Cell CenterKayseriTurkey
  5. 5.Medical FacultyErciyes UniversityKayseriTurkey
  6. 6.Faculty of Medicine, Department of Medical GeneticsErciyes UniversityKayseriTurkey
  7. 7.Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations