Journal of Molecular Medicine

, Volume 97, Issue 3, pp 325–339 | Cite as

Calreticulin regulates MYCN expression to control neuronal differentiation and stemness of neuroblastoma

  • Andy Chi-Lung Lee
  • Yu-Yin Shih
  • Fanfan Zhou
  • Tsi-Chian Chao
  • Hsinyu Lee
  • Yung-Feng Liao
  • Wen-Ming HsuEmail author
  • Ji-Hong HongEmail author
Original Article


Oncogenic N-MYC (MYCN) is widely used as a biomarker in clinics for neuroblastoma (NB) patients; nevertheless, mechanism that underlines MYCN regulation remains elusive. In the present study, we identified calreticulin (CRT) as a novel MYCN suppressor that downregulated MYCN promoter activity and protein expression to modulate neuronal differentiation and stemness. Our data showed that CRT-mediated MYCN suppression led to increased neurite length and commensurate elevation in differentiation marker GAP-43. We examined effect of radiotherapy and discovered that ionizing radiation (IR) was able to augment CRT expression dose-dependently in NB. Interestingly, neuronal differentiation and neurosphere formation (NSF) of NB were not only co-modulated by IR and CRT but were also dependent on Ca2+-buffering domain (C-domain) of CRT. Mutagenesis analysis showed that C-domain was indispensable for CRT-mediated MYCN regulation in NB differentiation and NSF. Of note, IR-induced formation of neural stem-like neurospheres (NS) was significantly impaired in CRT-overexpressed NB cells. The occupancy of CRT on MYCN 5′ proximal promoter was confirmed by chromatin immunoprecipitation assays, revealing potential CRT binding sites that coincided with transcription factor E2F1 binding elements. In addition, we identified a physical interaction between CRT and E2F1, and demonstrated that CRT occupancy on MYCN promoter prevented E2F1-mediated MYCN upregulation. In line with in vitro findings, hampered tumor latency and retarded tumor growth in xenograft model corroborated IR and CRT co-mediated neuronal differentiation of NB. Together, our data delineated a novel mechanism of CRT-mediated MYCN regulation and warranted further preclinical investigation towards new therapeutic strategy for NB. CRT suppresses MYCN expression and promotes neuronal differentiation in NB. CRT regulates MYCN via interaction with E2F1 and direct binding to MYCN promoter. Ca2+-buffering domain of CRT is critical in MYCN regulation and NB differentiation. CRT-MYCN axis impacts on NB stemness by modulating neurosphere formation. Xenograft model corroborates in vitro NB differentiation mediated by CRT and IR.


Calreticulin Differentiation MYCN Neuroblastoma Neurosphere Radiation 





Cancer stem cells


Chromatin immunoprecipitation


C-domain-deleted CRT


Event-free survival rate


Full-length CRT


Ionizing radiation




N-domain-deleted CRT


Neural stem cell






Neurosphere formation


Nerve growth factor


Pluripotent stem cells


P-domain-deleted CRT


Transcription start site



We wish to acknowledge Prof. Shin-Ru Shih at Chang Gung University for her kind assistance in general laboratory support. We also appreciate technical support from Microscopy core facility of Chang Gung Memorial Hospital at Linkou.

Author contributions

Conception and design: A.C. Lee, Y.Y. Shih, F. Zhou, Y.F. Liao, W.M. Hsu, J.H. Hong.

Clinical specimen acquisition: Y.Y. Shih, Y.F. Liao, W.M. Hsu.

Data acquisition, analysis, and interpretation: A.C. Lee, Y.Y. Shih, Y.F. Liao, W.M. Hsu.

Development of methodology: A.C. Lee, Y.Y. Shih, F. Zhou, Y.F. Liao, W.M. Hsu.

Technical and conceptual supervision: A.C. Lee, Y.Y. Shih, F. Zhou, H. Lee, Y.F. Liao, W.M. Hsu, J.H. Hong.

Writing and revision of manuscript: A.C. Lee, Y.Y. Shih, F. Zhou, T.C. Chao, H. Lee, Y.F. Liao, W.M. Hsu, J.H. Hong.

Funding information

This work was supported by medical research grants from Chang Gung Memorial Hospital [CMRPG3F2232, CMRP3G1491, CMRPG3E1301, and CIRPG3D0141] and Ministry of Science and Technology, Taiwan [MOST106-2314-B-182A-023-MY2].

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

109_2018_1730_MOESM1_ESM.docx (6.6 mb)
ESM 1 (DOCX 6752 kb)


  1. 1.
    Wright JH (1910) Neurocytoma or neuroblastoma, a kind of tumor not generally recognized. J Exp Med 12(4):556–561CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Weiss WA et al (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16(11):2985–2995CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wagner LM, Danks MK (2009) New therapeutic targets for the treatment of high-risk neuroblastoma. J Cell Biochem 107(1):46–57CrossRefPubMedGoogle Scholar
  4. 4.
    Matthay KK, George RE, Yu AL (2012) Promising therapeutic targets in neuroblastoma. Clin Cancer Res 18(10):2740–2753CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM, Children’s Oncology Group (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14):1324–1334CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nakagawara A, Ohira M (2004) Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett 204(2):213–224CrossRefPubMedGoogle Scholar
  7. 7.
    Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA, Nau MM, Witte ON, Toran-Allerand D, Gee CE, Minna JD, Alt FW (1986) Differential expression of myc family genes during murine development. Nature 319(6056):780–783CrossRefPubMedGoogle Scholar
  8. 8.
    Hallbook F, Bäckström A, Kullander K, Kylberg A, Williams R, Ebendal T (1995) Neurotrophins and their receptors in chicken neuronal development. Int J Dev Biol 39(5):855–868PubMedGoogle Scholar
  9. 9.
    Mueller S, Matthay KK (2009) Neuroblastoma: biology and staging. Curr Oncol Rep 11(6):431–438CrossRefPubMedGoogle Scholar
  10. 10.
    Brodeur GM et al (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224(4653):1121–1124CrossRefPubMedGoogle Scholar
  11. 11.
    Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA (2010) MYCN oncoprotein targets and their therapeutic potential. Cancer Lett 293(2):144–157CrossRefPubMedGoogle Scholar
  12. 12.
    Gustafson WC, Weiss WA (2010) Myc proteins as therapeutic targets. Oncogene 29(9):1249–1259CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Prochownik EV, Vogt PK (2010) Therapeutic targeting of Myc. Genes Cancer 1(6):650–659CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR (1994) Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 9(1):59–70PubMedGoogle Scholar
  15. 15.
    Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM (2005) The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9(3):327–338CrossRefPubMedGoogle Scholar
  16. 16.
    Marshall GM, Gherardi S, Xu N, Neiron Z, Trahair T, Scarlett CJ, Chang DK, Liu PY, Jankowski K, Iraci N, Haber M, Norris MD, Keating J, Sekyere E, Jonquieres G, Stossi F, Katzenellenbogen BS, Biankin AV, Perini G, Liu T (2010) Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects. Oncogene 29(44):5957–5968CrossRefPubMedGoogle Scholar
  17. 17.
    Marshall GM, Liu PY, Gherardi S, Scarlett CJ, Bedalov A, Xu N, Iraci N, Valli E, Ling D, Thomas W, van Bekkum M, Sekyere E, Jankowski K, Trahair T, Mackenzie KL, Haber M, Norris MD, Biankin AV, Perini G, Liu T (2011) SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet 7(6):e1002135CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chanthery YH, Gustafson WC, Itsara M, Persson A, Hackett CS, Grimmer M, Charron E, Yakovenko S, Kim G, Matthay KK, Weiss WA (2012) Paracrine signaling through MYCN enhances tumor-vascular interactions in neuroblastoma. Sci Transl Med 4(115):115ra3CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hogarty MD, Maris JM (2012) PI3King on MYCN to improve neuroblastoma therapeutics. Cancer Cell 21(2):145–147CrossRefPubMedGoogle Scholar
  20. 20.
    Cui H, Ma J, Ding J, Li T, Alam G, Ding HF (2006) Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281(45):34696–34704CrossRefPubMedGoogle Scholar
  21. 21.
    Totary-Jain H, Naveh-Many T, Riahi Y, Kaiser N, Eckel J̈, Sasson S (2005) Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res 97(10):1001–1008CrossRefPubMedGoogle Scholar
  22. 22.
    Coppolino MG, Dedhar S (1999) Ligand-specific, transient interaction between integrins and calreticulin during cell adhesion to extracellular matrix proteins is dependent upon phosphorylation/dephosphorylation events. Biochem J 340(Pt 1):41–50CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chang HH, Lee H, Hu MK, Tsao PN, Juan HF, Huang MC, Shih YY, Wang BJ, Jeng YM, Chang CL, Huang SF, Tsay YG, Hsieh FJ, Lin KH, Hsu WM, Liao YF (2010) Notch1 expression predicts an unfavorable prognosis and serves as a therapeutic target of patients with neuroblastoma. Clin Cancer Res 16(17):4411–4420CrossRefPubMedGoogle Scholar
  24. 24.
    Hsu WM, Hsieh FJ, Jeng YM, Kuo ML, Chen CN, Lai DM, Hsieh LJ, Wang BT, Tsao PN, Lee H, Lin MT, Lai HS, Chen WJ (2005) Calreticulin expression in neuroblastoma--a novel independent prognostic factor. Ann Oncol 16(2):314–321CrossRefPubMedGoogle Scholar
  25. 25.
    Weng WC, Lin KH, Wu PY, Lu YC, Weng YC, Wang BJ, Liao YF, Hsu WM, Lee WT, Lee H (2015) Calreticulin regulates VEGF-A in neuroblastoma cells. Mol Neurobiol 52(1):758–770CrossRefPubMedGoogle Scholar
  26. 26.
    Shih YY, Nakagawara A, Lee H, Juan HF, Jeng YM, Lin DT, Yang YL, Tsay YG, Huang MC, Pan CY, Hsu WM, Liao YF (2011) Calreticulin mediates nerve growth factor-induced neuronal differentiation. J Mol Neurosci 47(3):571–81Google Scholar
  27. 27.
    Pacey LK, Stead S, Gleave J, Tomczyk K, Doering L (2006) Neural stem cell culture: neurosphere generation, microscopical analysis and cryopreservation. Nat Protoc Exch.
  28. 28.
    Srinivas H, Xia D, Moore NL, Uray IP, Kim H, Ma L, Weigel NL, Brown PH, Kurie JM (2006) Akt phosphorylates and suppresses the transactivation of retinoic acid receptor alpha. Biochem J 395(3):653–662CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shimada H, Ambros IM, Dehner LP, Hata JI, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP (1999) The international neuroblastoma pathology classification (the Shimada system). Cancer 86(2):364–372CrossRefPubMedGoogle Scholar
  30. 30.
    Eilers M, Eisenman RN (2008) Myc's broad reach. Genes Dev 22(20):2755–2766CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Watanabe Y, Ishizuka Y, Hirano T, Nagasaki-Maeoka E, Hoshi R, Yoshizawa S, Uekusa S, Kawashima H, Sugito K, Shinohara K, Fukuda N, Nagase H, Soma M, Koshinaga T, Fujiwara K (2017) ZAR1 knockdown promotes the differentiation of human neuroblastoma cells by suppression of MYCN expression. Med Oncol 34(9):158CrossRefPubMedGoogle Scholar
  32. 32.
    Strieder V, Lutz W (2003) E2F proteins regulate MYCN expression in neuroblastomas. J Biol Chem 278(5):2983–2989CrossRefPubMedGoogle Scholar
  33. 33.
    Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M (1994) Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367(6462):476–480CrossRefPubMedGoogle Scholar
  34. 34.
    Dedhar S, Rennie PS, Shago M, Hagesteijn CYL, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, Giguère V (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367(6462):480–483CrossRefPubMedGoogle Scholar
  35. 35.
    Craig BT, Rellinger EJ, Alvarez AL, Dusek HL, Qiao J, Chung DH (2016) Induced differentiation inhibits sphere formation in neuroblastoma. Biochem Biophys Res Commun 477(2):255–259CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH (2006) MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun 351(1):192–197CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Burkhart CA, Cheng AJ, Madafiglio J, Kavallaris M, Mili M, Marshall GM, Weiss WA, Khachigian LM, Norris MD, Haber M (2003) Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma. J Natl Cancer Inst 95(18):1394–1403CrossRefPubMedGoogle Scholar
  38. 38.
    Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A 107(32):14152–14157CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Swartling FJ, Savov V, Persson AI, Chen J, Hackett CS, Northcott PA, Grimmer MR, Lau J, Chesler L, Perry A, Phillips JJ, Taylor MD, Weiss WA (2012) Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 21(5):601–613CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nowak K, Kerl K, Fehr D, Kramps C, Gessner C, Killmer K, Samans B, Berwanger B, Christiansen H, Lutz W (2006) BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res 34(6):1745–1754CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kramps C, Strieder V, Sapetschnig A, Suske G, Lutz W (2004) E2F and Sp1/Sp3 synergize but are not sufficient to activate the MYCN gene in neuroblastomas. J Biol Chem 279(7):5110–5117CrossRefPubMedGoogle Scholar
  42. 42.
    Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E, Simonds EF, Seeger R, Matthay KK, Hertz NT, Eilers M, Shokat KM, Weiss WA (2014) Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26(3):414–427CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Muth D, Ghazaryan S, Eckerle I, Beckett E, Pöhler C, Batzler J, Beisel C, Gogolin S, Fischer M, Henrich KO, Ehemann V, Gillespie P, Schwab M, Westermann F (2010) Transcriptional repression of SKP2 is impaired in MYCN-amplified neuroblastoma. Cancer Res 70(9):3791–3802CrossRefPubMedGoogle Scholar
  44. 44.
    Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G, Lunec J, Tweddle DA (2010) p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer Res 70(4):1377–1388CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A (2000) Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407(6804):592–598CrossRefPubMedGoogle Scholar
  46. 46.
    Huang M, Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 3(10):a014415CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Suenaga Y, Islam SMR, Alagu J, Kaneko Y, Kato M, Tanaka Y, Kawana H, Hossain S, Matsumoto D, Yamamoto M, Shoji W, Itami M, Shibata T, Nakamura Y, Ohira M, Haraguchi S, Takatori A, Nakagawara A (2014) NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3beta resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet 10(1):e1003996CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mosse YP et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, Pei D, Sharma B, Vetharoy WR, Hallsworth A, Ahmad Z, Barker K, Moreau L, Webber H, Wang W, Liu Q, Perez-Atayde A, Rodig S, Cheung NK, Raynaud F, Hallberg B, Robinson SP, Gray NS, Pearson ADJ, Eccles SA, Chesler L, George RE (2012) The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 22(1):117–130CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, Rodig SJ, Neuberg DS, Helman D, Feng H, Stewart RA, Wang W, George RE, Kanki JP, Look AT (2012) Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21(3):362–373CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyChang Gung Memorial HospitalLinkouTaiwan
  2. 2.Radiation Biology Research Center, Institute for Radiological ResearchChang Gung Memorial Hospital/Chang Gung UniversityTaoyuanTaiwan
  3. 3.Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuanTaiwan
  4. 4.Faculty of PharmacyUniversity of SydneySydneyAustralia
  5. 5.Research Center for Developmental Biology and Regenerative MedicineNational Taiwan UniversityTaipeiTaiwan
  6. 6.Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
  7. 7.Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
  8. 8.Department of SurgeryNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
  9. 9.Proton and Radiation Therapy CenterChang Gung Memorial HospitalTaoyuanTaiwan

Personalised recommendations