Journal of Molecular Medicine

, Volume 97, Issue 1, pp 89–102 | Cite as

Downregulation of DAPK1 promotes the stemness of cancer stem cells and EMT process by activating ZEB1 in colorectal cancer

  • Wenzheng Yuan
  • Jintong Ji
  • Yan Shu
  • Jinhuang Chen
  • Sanguang Liu
  • Liang Wu
  • Zili Zhou
  • Zhengyi Liu
  • Qiang Tang
  • Xudan Zhang
  • Xiaogang ShuEmail author
Original Article


Cancer stem cells (CSCs) and epithelial–mesenchymal transition (EMT) play an important role in the metastasis and chemoresistance in the context of colorectal cancer (CRC). Downregulation of death associated protein kinase 1 (DAPK1) may promote metastasis and chemoresistance of cancer cells through various mechanisms. However, the association between DAPK1 and CSCs or EMT has not been explored. In this study, we demonstrated that DAPK1 was associated with elevated stemness of CSCs in patients with CRC. Silencing of DAPK1 in CRC cell lines promoted the metastasis and chemoresistance due to increased stemness of CSCs and enhanced mesenchymal phenotype, an effect that was mediated via activation of the transcription factor, zinc finger E-box binding homeobox 1 (ZEB1). Blockade of this signaling pathway attenuated the stemness of CSCs and rescued the EMT process. DAPK1–ZEB1 may lie at the interface of TGF-β and WNT pathways and participate in both CSCs and EMT process. Targeted therapies aimed at DAPK1–ZEB1 pathway may inhibit the chemoresistance and metastasis of CRC.

Key messages

  • Downregulation of DAPK1 promotes chemoresistance and metastasis of CRC.

  • Inhibition of DAPK1 promotes the stemness of cancer stem cells and EMT process.

  • DAPK1–ZEB1 may lie at the interface of TGF-β and WNT pathways.

  • DAPK1–ZEB1 participates in both CSCs and EMT process.


Colorectal cancer Death-associated protein kinase 1 Cancer stem cells Epithelial–mesenchymal transition Zinc finger E-box binding homeobox 1 



We thank Medjaden Bioscience Limited (Hong Kong, China) for proofreading this manuscript.

Funding information

This study was supported by the National Nature Science Foundation of China (grant number 81470789, and 81271199), and Research Fund of Public welfare in Health Industry (grant number 201402015). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

The study was approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology (Wuhan China). Written informed consent was obtained from all participants in accordance with the guidelines in The Declaration of Helsinki 2000. All mouse experiments were conducted with approval of the Institutional Animal Care and Treatment Committee of Tongji Medical College of Huazhong University of Science and Technology, China.

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

109_2018_1716_Fig8_ESM.png (2.1 mb)

(PNG 2119 kb)

109_2018_1716_MOESM1_ESM.tif (8.4 mb)
High resolution image (TIF 8633 kb)
109_2018_1716_Fig9_ESM.png (9.2 mb)

(PNG 9449 kb)

109_2018_1716_MOESM2_ESM.tif (32.4 mb)
High resolution image (TIF 33154 kb)
109_2018_1716_Fig10_ESM.png (1.3 mb)

(PNG 1297 kb)

109_2018_1716_MOESM3_ESM.tif (10.7 mb)
High resolution image (TIF 10923 kb)
109_2018_1716_MOESM4_ESM.docx (70 kb)
ESM 4 (DOCX 69 kb)


  1. 1.
    Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MF MI, Allen C, Hansen G, Woodbrook R, Wolfe C, Hamadeh RR, Moore A, Werdecker A, Gessner BD, Te Ao B, McMahon B, Karimkhani C, Yu C, Cooke GS, Schwebel DC, Carpenter DO, Pereira DM, Nash D, Kazi DS, De Leo D, Plass D, Ukwaja KN, Thurston GD, Yun Jin K, Simard EP, Mills E, Park EK, Catala-Lopez F, de Veber G, Gotay C, Khan G, Hosgood HD 3rd, Santos IS, Leasher JL, Singh J, Leigh J, Jonas JB, Sanabria J, Beardsley J, Jacobsen KH, Takahashi K, Franklin RC, Ronfani L, Montico M, Naldi L, Tonelli M, Geleijnse J, Petzold M, Shrime MG, Younis M, Yonemoto N, Breitborde N, Yip P, Pourmalek F, Lotufo PA, Esteghamati A, Hankey GJ, Ali R, Lunevicius R, Malekzadeh R, Dellavalle R, Weintraub R, Lucas R, Hay R, Rojas-Rueda D, Westerman R, Sepanlou SG, Nolte S, Patten S, Weichenthal S, Abera SF, Fereshtehnejad SM, Shiue I, Driscoll T, Vasankari T, Alsharif U, Rahimi-Movaghar V, Vlassov VV, Marcenes WS, Mekonnen W, Melaku YA, Yano Y, Artaman A, Campos I, MacLachlan J, Mueller U, Kim D, Trillini M, Eshrati B, Williams HC, Shibuya K, Dandona R, Murthy K, Cowie B, Amare AT, Antonio CA, Castaneda-Orjuela C, van Gool CH, Violante F, Oh IH, Deribe K, Soreide K, Knibbs L, Kereselidze M, Green M, Cardenas R, Roy N, Tillmann T, Li Y, Krueger H, Monasta L, Dey S, Sheikhbahaei S, Hafezi-Nejad N, Kumar GA, Sreeramareddy CT, Dandona L, Wang H, Vollset SE, Mokdad A, Salomon JA, Lozano R, Vos T, Forouzanfar M, Lopez A, Murray C, Naghavi M (2015) The global burden of cancer 2013. JAMA Oncol 1(4):505–527CrossRefGoogle Scholar
  2. 2.
    Jung B, Staudacher JJ, Beauchamp D (2017) Transforming growth factor beta superfamily signaling in development of colorectal cancer. Gastroenterology 152(1):36–52CrossRefGoogle Scholar
  3. 3.
    Marin JJ, Sanchez de Medina F, Castano B, Bujanda L, Romero MR, Martinez-Augustin O, Moral-Avila RD, Briz O (2012) Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab Rev 44(2):148–172CrossRefGoogle Scholar
  4. 4.
    Zhao J (2016) Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther 160:145–158CrossRefGoogle Scholar
  5. 5.
    Zeuner A, Todaro M, Stassi G, De Maria R (2014) Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15(6):692–705CrossRefGoogle Scholar
  6. 6.
    Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23(10):912–923CrossRefGoogle Scholar
  7. 7.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715CrossRefGoogle Scholar
  8. 8.
    Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13(10):727–738CrossRefGoogle Scholar
  9. 9.
    Steinmann S, Scheibe K, Erlenbach-Wuensch K, Neufert C, Schneider-Stock R (2015) Death-associated protein kinase: a molecule with functional antagonistic duality and a potential role in inflammatory bowel disease (review). Int J Oncol 47(1):5–15CrossRefGoogle Scholar
  10. 10.
    Yuan W, Chen J, Shu Y, Liu S, Wu L, Ji J, Liu Z, Tang Q, Zhou Z, Cheng Y, Jiang B, Shu X (2017) Correlation of DAPK1 methylation and the risk of gastrointestinal cancer: a systematic review and meta-analysis. PLoS One 12(9):e0184959. CrossRefGoogle Scholar
  11. 11.
    Chen HY, Lee YR, Chen RH (2014) The functions and regulations of DAPK in cancer metastasis. Apoptosis 19(2):364–370CrossRefGoogle Scholar
  12. 12.
    Wang WJ, Kuo JC, Ku W, Lee YR, Lin FC, Chang YL, Lin YM, Chen CH, Huang YP, Chiang MJ, Yeh SW, Wu PR, Shen CH, Wu CT, Chen RH (2007) The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell 27(5):701–716CrossRefGoogle Scholar
  13. 13.
    Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, Wang WC, Lin FM, Chen Z, Huang HD, Shyy JY, Liang JT, Chen RH (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 72(14):3631–3641CrossRefGoogle Scholar
  14. 14.
    Bialik S, Kimchi A (2014) The DAP-kinase interactome. Apoptosis 19(2):316–328CrossRefGoogle Scholar
  15. 15.
    Ogawa T, Liggett TE, Melnikov AA, Monitto CL, Kusuke D, Shiga K, Kobayashi T, Horii A, Chatterjee A, Levenson VV, Koch WM, Sidransky D, Chang X (2012) Methylation of death-associated protein kinase is associated with cetuximab and erlotinib resistance. Cell Cycle 11(8):1656–1663CrossRefGoogle Scholar
  16. 16.
    Jiang Y, Xu P, Yao D, Chen X, Dai H (2017) CD33, CD96 and death associated protein kinase (DAPK) expression are associated with the survival rate and/or response to the chemotherapy in the patients with acute myeloid leukemia (AML). Med Sci Monit 23:1725–1732CrossRefGoogle Scholar
  17. 17.
    Mittag F, Kuester D, Vieth M, Peters B, Stolte B, Roessner A, Schneider-Stock R (2006) DAPK promotor methylation is an early event in colorectal carcinogenesis. Cancer Lett 240(1):69–75CrossRefGoogle Scholar
  18. 18.
    Ivanovska J, Zlobec I, Forster S, Karamitopoulou E, Dawson H, Koelzer VH, Agaimy A, Garreis F, Soder S, Laqua W, Lugli A, Hartmann A, Rau TT, Schneider-Stock R (2015) DAPK loss in colon cancer tumor buds: implications for migration capacity of disseminating tumor cells. Oncotarget 6(34):36774–36788CrossRefGoogle Scholar
  19. 19.
    Zhang P, Sun Y, Ma L (2015) ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14(4):481–487CrossRefGoogle Scholar
  20. 20.
    Notterman DA, Alon U, Sierk AJ, Levine AJ (2001) Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61(7):3124–3130Google Scholar
  21. 21.
    Ki DH, Jeung HC, Park CH, Kang SH, Lee GY, Lee WS, Kim NK, Chung HC, Rha SY (2007) Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int J Cancer 121(9):2005–2012CrossRefGoogle Scholar
  22. 22.
    Skrzypczak M, Goryca K, Rubel T, Paziewska A, Mikula M, Jarosz D, Pachlewski J, Oledzki J, Ostrowski J (2010) Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS One 5(10).
  23. 23.
    Lo PK, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q, Chen H (2012) CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFbeta signaling. Oncogene 31(21):2614–2626CrossRefGoogle Scholar
  24. 24.
    Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LCG, Lannon WA, Grotzinger C, Del Rio M, Lhermitte B, Olshen AB, Wiedenmann B, Cantley LC, Gray JW, Hanahan D (2013) A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 19(5):619–625CrossRefGoogle Scholar
  25. 25.
    Chen J, Yuan W, Wu L, Tang Q, Xia Q, Ji J, Liu Z, Ma Z, Zhou Z, Cheng Y, Shu X (2017) PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway. Oncotarget 8(6):9961–9973Google Scholar
  26. 26.
    Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988CrossRefGoogle Scholar
  27. 27.
    Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH (2002) TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4(1):51–58CrossRefGoogle Scholar
  28. 28.
    You H, Ding W, Rountree CB (2010) Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology 51(5):1635–1644CrossRefGoogle Scholar
  29. 29.
    Bae WJ, Lee SH, Rho YS, Koo BS, Lim YC (2016) Transforming growth factor beta1 enhances stemness of head and neck squamous cell carcinoma cells through activation of Wnt signaling. Oncol Lett 12(6):5315–5320CrossRefGoogle Scholar
  30. 30.
    Schneider-Stock R (2014) DAPK: a cancer gene chameleon. Apoptosis 19(2):285CrossRefGoogle Scholar
  31. 31.
    Olsen OE, Wader KF, Hella H, Mylin AK, Turesson I, Nesthus I, Waage A, Sundan A, Holien T (2015) Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Commun Signal 13:27. CrossRefGoogle Scholar
  32. 32.
    Joseph JV, Conroy S, Tomar T, Eggens-Meijer E, Bhat K, Copray S, Walenkamp AM, Boddeke E, Balasubramanyian V, Wagemakers M, den Dunnen WF, Kruyt FA (2014) TGF-beta is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis 5:e1443CrossRefGoogle Scholar
  33. 33.
    Kahlert UD, Maciaczyk D, Doostkam S, Orr BA, Simons B, Bogiel T, Reithmeier T, Prinz M, Schubert J, Niedermann G, Brabletz T, Eberhart CG, Nikkhah G, Maciaczyk J (2012) Activation of canonical WNT/beta-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett 325(1):42–53CrossRefGoogle Scholar
  34. 34.
    Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495CrossRefGoogle Scholar
  35. 35.
    Kim ST, Sohn I, Do IG, Jang J, Kim SH, Jung IH, Park JO, Park YS, Talasaz A, Lee J, Kim HC (2014) Transcriptome analysis of CD133-positive stem cells and prognostic value of survivin in colorectal cancer. Cancer Genomics & Proteomics 11(5):259–266Google Scholar
  36. 36.
    Wu PR, Tsai PI, Chen GC, Chou HJ, Huang YP, Chen YH, Lin MY, Kimchi A, Chien CT, Chen RH (2011) DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 18(9):1507–1520CrossRefGoogle Scholar
  37. 37.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101(25):9309–9314CrossRefGoogle Scholar
  38. 38.
    Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD, Yu LJ, Li AL, Zhang YJ, Jiang WH, Zhang Z (2017) LincRNA-Gm4419 knockdown ameliorates NF-kappaB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis 8(2):e2583CrossRefGoogle Scholar
  39. 39.
    Benderska N, Ivanovska J, Rau TT, Schulze-Luehrmann J, Mohan S, Chakilam S, Gandesiri M, Ziesche E, Fischer T, Soder S, Agaimy A, Distel L, Sticht H, Mahadevan V, Schneider-Stock R (2014) DAPK-HSF1 interaction as a positive-feedback mechanism stimulating TNF-induced apoptosis in colorectal cancer cells. J Cell Sci 127(Pt 24):5273–5287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wenzheng Yuan
    • 1
    • 2
  • Jintong Ji
    • 1
  • Yan Shu
    • 3
  • Jinhuang Chen
    • 4
  • Sanguang Liu
    • 5
  • Liang Wu
    • 1
  • Zili Zhou
    • 1
  • Zhengyi Liu
    • 1
  • Qiang Tang
    • 1
  • Xudan Zhang
    • 1
  • Xiaogang Shu
    • 1
    Email author
  1. 1.Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhanChina
  3. 3.College of Clinical MedicineHubei University of Science and TechnologyXianningChina
  4. 4.Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  5. 5.Department of Hepatobiliary Surgery, The Second HospitalHebei Medical UniversityShijiazhuangChina

Personalised recommendations